Skip to content →

Category: number theory

Closing in on Gabriel’s topos?

‘Gabriel’s topos’ (see here) is the conjectural, but still elusive topos from which the validity of the Riemann hypothesis would follow.

It is the latest attempt in Alain Connes’ 20 year long quest to tackle the RH (before, he tried the tools of noncommutative geometry and later those offered by the field with one element).

For the last 5 years he hopes that topos theory might provide the missing ingredient. Together with Katia Consani he introduced and studied the geometry of the Arithmetic site, and later the geometry of the scaling site.

If you look at the points of these toposes you get horribly complicated ‘non-commutative’ spaces, such as the finite adele classes $\mathbb{Q}^*_+ \backslash \mathbb{A}^f_{\mathbb{Q}} / \widehat{\mathbb{Z}}^{\ast}$ (in case of the arithmetic site) and the full adele classes $\mathbb{Q}^*_+ \backslash \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^{\ast}$ (for the scaling site).

In Vienna, Connes gave a nice introduction to the arithmetic site in two lectures. The first part of the talk below also gives an historic overview of his work on the RH



The second lecture can be watched here.

However, not everyone is as optimistic about the topos-approach as he seems to be. Here’s an insightful answer on MathOverflow by Will Sawin to the question “What is precisely still missing in Connes’ approach to RH?”.

Other interesting MathOverflow threads related to the RH-approach via the field with one element are Approaches to Riemann hypothesis using methods outside number theory and Riemann hypothesis via absolute geometry.

About a month ago, from May 10th till 14th Alain Connes gave a series of lectures at Ohio State University with title “The Riemann-Roch strategy, quantizing the Scaling Site”.

The accompanying paper has now been arXived: The Riemann-Roch strategy, Complex lift of the Scaling Site (joint with K. Consani).

Especially interesting is section 2 “The geometry behind the zeros of $\zeta$” in which they explain how looking at the zeros locus inevitably leads to the space of adele classes and why one has to study this space with the tools from noncommutative geometry.

Perhaps further developments will be disclosed in a few weeks time when Connes is one of the speakers at Toposes in Como.



3 Comments

From the Da Vinci code to Habiro

The Fibonacci sequence reappears a bit later in Dan Brown’s book ‘The Da Vinci Code’ where it is used to login to the bank account of Jacques Sauniere at the fictitious Parisian branch of the Depository Bank of Zurich.



Last time we saw that the Hankel matrix of the Fibonacci series $F=(1,1,2,3,5,\dots)$ is invertible over $\mathbb{Z}$
\[
H(F) = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \in SL_2(\mathbb{Z}) \]
and we can use the rule for the co-multiplication $\Delta$ on $\Re(\mathbb{Q})$, the algebra of rational linear recursive sequences, to determine $\Delta(F)$.

For a general integral linear recursive sequence the corresponding Hankel matrix is invertible over $\mathbb{Q}$, but rarely over $\mathbb{Z}$. So we need another approach to compute the co-multiplication on $\Re(\mathbb{Z})$.

Any integral sequence $a = (a_0,a_1,a_2,\dots)$ can be seen as defining a $\mathbb{Z}$-linear map $\lambda_a$ from the integral polynomial ring $\mathbb{Z}[x]$ to $\mathbb{Z}$ itself via the rule $\lambda_a(x^n) = a_n$.

If $a \in \Re(\mathbb{Z})$, then there is a monic polynomial with integral coefficients of a certain degree $n$

\[
f(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + \dots + b_{n-1} x + b_n \]

such that for every integer $m$ we have that

\[
a_{m+n} + b_1 a_{m+n-1} + b_2 a_{m+n-2} + \dots + b_{n-1} a_{m+1} + a_m = 0 \]

Alternatively, we can look at $a$ as defining a $\mathbb{Z}$-linear map $\lambda_a$ from the quotient ring $\mathbb{Z}[x]/(f(x))$ to $\mathbb{Z}$.

The multiplicative structure on $\mathbb{Z}[x]/(f(x))$ dualizes to a co-multiplication $\Delta_f$ on the set of all such linear maps $(\mathbb{Z}[x]/(f(x)))^{\ast}$ and we can compute $\Delta_f(a)$.

We see that the set of all integral linear recursive sequences can be identified with the direct limit
\[
\Re(\mathbb{Z}) = \underset{\underset{f|g}{\rightarrow}}{lim}~(\frac{\mathbb{Z}[x]}{(f(x))})^{\ast} \]
(where the directed system is ordered via division of monic integral polynomials) and so is equipped with a co-multiplication $\Delta = \underset{\rightarrow}{lim}~\Delta_f$.

Btw. the ring structure on $\Re(\mathbb{Z}) \subset (\mathbb{Z}[x])^{\ast}$ comes from restricting to $\Re(\mathbb{Z})$ the dual structures of the co-ring structure on $\mathbb{Z}[x]$ given by
\[
\Delta(x) = x \otimes x \quad \text{and} \quad \epsilon(x) = 1 \]

From this description it is clear that you need to know a hell of a lot number theory to describe this co-multiplication explicitly.

As most of us prefer to work with rings rather than co-rings it is a good idea to begin to study this co-multiplication $\Delta$ by looking at the dual ring structure of
\[
\Re(\mathbb{Z})^{\ast} = \underset{\underset{ f | g}{\leftarrow}}{lim}~\frac{\mathbb{Z}[x]}{(f(x))} \]
This is the completion of $\mathbb{Z}[x]$ at the multiplicative set of all monic integral polynomials.

This is a horrible ring and very little is known about it. Some general remarks were proved by Kazuo Habiro in his paper Cyclotomic completions of polynomial rings.

In fact, Habiro got interested is a certain subring of $\Re(\mathbb{Z})^{\ast}$ which we now know as the Habiro ring and which seems to be a red herring is all stuff about the field with one element, $\mathbb{F}_1$ (more on this another time). Habiro’s ring is

\[
\widehat{\mathbb{Z}[q]} = \underset{\underset{n|m}{\leftarrow}}{lim}~\frac{\mathbb{Z}[q]}{(q^n-1)} \]

and its elements are all formal power series of the form
\[
a_0 + a_1 (q-1) + a_2 (q^2-1)(q-1) + \dots + a_n (q^n-1)(q^{n-1}-1) \dots (q-1) + \dots \]
with all coefficients $a_n \in \mathbb{Z}$.

Here’s a funny property of such series. If you evaluate them at $q \in \mathbb{C}$ these series are likely to diverge almost everywhere, but they do converge in all roots of unity!

Some people say that these functions are ‘leaking out of the roots of unity’.

If the ring $\Re(\mathbb{Z})^{\ast}$ is controlled by the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then Habiro’s ring is controlled by the abelianzation $Gal(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} \simeq \hat{\mathbb{Z}}^{\ast}$.

Comments closed

The Langlands program and non-commutative geometry

The Bulletin of the AMS just made this paper by Julia Mueller available online: “On the genesis of Robert P. Langlands’ conjectures and his letter to Andre Weil” (hat tip +ChandanDalawat and +DavidRoberts on Google+).

It recounts the story of the early years of Langlands and the first years of his mathematical career (1960-1966)leading up to his letter to Andre Weil in which he outlines his conjectures, which would become known as the Langlands program.

Langlands letter to Weil is available from the IAS.

The Langlands program is a vast net of conjectures. For example, it conjectures that there is a correspondence between

– $n$-dimensional representations of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, and

– specific data coming from an adelic quotient-space $GL_n(\mathbb{A}_{\mathbb{Q}})/GL_n(\mathbb{Q})$.

For $n=1$ this is essentially class field theory with the correspondence given by Artin’s reciprocity law.

Here we have on the one hand the characters of the abelianised absolute Galois group

\[
Gal(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} \simeq Gal(\mathbb{Q}(\pmb{\mu}_{\infty})/\mathbb{Q}) \simeq \widehat{\mathbb{Z}}^{\ast} \]

and on the other hand the connected components of the idele class space

\[
GL_1(\mathbb{A}_{\mathbb{Q}})/GL_1(\mathbb{Q}) = \mathbb{A}_{\mathbb{Q}}^{\ast} / \mathbb{Q}^{\ast} = \mathbb{R}_+^{\ast} \times \widehat{\mathbb{Z}}^{\ast} \]

For $n=2$ it involves the study of Galois representations coming from elliptic curves. A gentle introduction to the general case is Mark Kisin’s paper What is … a Galois representation?.

One way to look at some of the quantum statistical systems studied via non-commutative geometry is that they try to understand the “bad” boundary of the Langlands space $GL_n(\mathbb{A}_{\mathbb{Q}})/GL_n(\mathbb{Q})$.

Here, the Bost-Connes system corresponds to the $n=1$ case, the Connes-Marcolli system to the $n=2$ case.

If $\mathbb{A}’_{\mathbb{Q}}$ is the subset of all adeles having almost all of its terms in $\widehat{\mathbb{Z}}_p^{\ast}$, then there is a well-defined map

\[
\pi~:~\mathbb{A}’_{\mathbb{Q}}/\mathbb{Q}^{\ast} \rightarrow \mathbb{R}_+ \qquad (x_{\infty},x_2,x_2,\dots) \mapsto | x_{\infty} | \prod_p | x_p |_p \]

The inverse image of $\pi$ over $\mathbb{R}_+^{\ast}$ are exactly the idele classes $\mathbb{A}_{\mathbb{Q}}^{\ast}/\mathbb{Q}^{\ast}$, so we can view them as the nice locus of the horrible complicated quotient of adele-classes $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}^*$. And we can view the adele-classes as a ‘closure’ of the idele classes.

But, the fiber $\pi^{-1}(0)$ has horrible topological properties because $\mathbb{Q}^*$ acts ergodically on it due to the fact that $log(p)/log(q)$ is irrational for distinct primes $p$ and $q$.

This is why it is better to view the adele-classes not as an ordinary space (one with bad topological properties), but rather as a ‘non-commutative’ space because it is controlled by a non-commutative algebra, the Bost-Connes algebra.

For $n=2$ there’s a similar story with a ‘bad’ quotient $M_2(\mathbb{A}_{\mathbb{Q}})/GL_2(\mathbb{Q})$, being the closure of an ‘open’ nice piece which is the Langlands quotient space $GL_2(\mathbb{A}_{\mathbb{Q}})/GL_2(\mathbb{Q})$.

Comments closed