Skip to content →

Tag: topology

adeles and ideles

Before we can even attempt to describe the adelic description of the Bost-Connes Hecke algebra and its symmetries, we’d probably better recall the construction and properties of adeles and ideles. Let’s start with the p-adic numbers $\hat{\mathbb{Z}}_p $ and its field of fractions $\hat{\mathbb{Q}}_p $. For p a prime number we can look at the finite rings $\mathbb{Z}/p^n \mathbb{Z} $ of all integer classes modulo $p^n $. If two numbers define the same element in $\mathbb{Z}/p^n\mathbb{Z} $ (meaning that their difference is a multiple of $p^n $), then they certainly define the same class in any $\mathbb{Z}/p^k \mathbb{Z} $ when $k \leq n $, so we have a sequence of ringmorphisms between finite rings

$ \ldots \rightarrow^{\phi_{n+1}} \mathbb{Z}/p^n \mathbb{Z} \rightarrow^{\phi_n} \mathbb{Z}/p^{n-1}\mathbb{Z} \rightarrow^{\phi_{n-1}} \ldots \rightarrow^{\phi_3} \mathbb{Z}/p^2\mathbb{Z} \rightarrow^{\phi_2} \mathbb{Z}/p\mathbb{Z} $

The ring of p-adic integers $\hat{\mathbb{Z}}_p $ can now be defined as the collection of all (infinite) sequences of elements $~(\ldots,x_n,x_{n-1},\ldots,x_2,x_1) $ with $x_i \in \mathbb{Z}/p^i\mathbb{Z} $ such that
$\phi_i(x_i) = x_{i-1} $ for all natural numbers $i $. Addition and multiplication are defined componentswise and as all the maps $\phi_i $ are ringmorphisms, this produces no compatibility problems.

One can put a topology on $\hat{\mathbb{Z}}_p $ making it into a compact ring. Here’s the trick : all components $\mathbb{Z}/p^n \mathbb{Z} $ are finite so they are compact if we equip these sets with the discrete topology (all subsets are opens). But then, Tychonov’s product theorem asserts that the product-space $\prod_n \mathbb{Z}/n \mathbb{Z} $ with the product topology is again a compact topological space. As $\hat{\mathbb{Z}}_p $ is a closed subset, it is compact too.

By construction, the ring $\hat{\mathbb{Z}}_p $ is a domain and hence has a field of fraction which we will denote by $\hat{\mathbb{Q}}_p $. These rings give the p-local information of the rational numbers $\mathbb{Q} $. We will now ‘glue together’ these local data over all possible prime numbers $p $ into adeles. So, forget the above infinite product used to define the p-adics, below we will work with another infinite product, one factor for each prime number.

The adeles $\mathcal{A} $ are the restricted product of the $\hat{\mathbb{Q}}_p $ over $\hat{\mathbb{Z}}_p $ for all prime numbers p. By ‘restricted’ we mean that elements of $\mathcal{A} $ are exactly those infinite vectors $a=(a_2,a_3,a_5,a_7,a_{11},\ldots ) = (a_p)_p \in \prod_p \hat{\mathbb{Q}}_p $ such that all but finitely of the components $a_p \in \hat{\mathbb{Z}}_p $. Addition and multiplication are defined component-wise and the restriction condition is compatible with both adition and multiplication. So, $\mathcal{A} $ is the adele ring. Note that most people call this $\mathcal{A} $ the finite Adeles as we didn’t consider infinite places, i will distinguish between the two notions by writing adeles resp. Adeles for the finite resp. the full blown version. The adele ring $\mathcal{A} $ has as a subring the infinite product $\mathcal{R} = \prod_p \hat{\mathbb{Z}}_p $. If you think of $\mathcal{A} $ as a version of $\mathbb{Q} $ then $\mathcal{R} $ corresponds to $\mathbb{Z} $ (and next time we will see that there is a lot more to this analogy).

The ideles are the group of invertible elements of the ring $\mathcal{A} $, that is, $\mathcal{I} = \mathcal{A}^{\ast} $. That s, an element is an infinite vector $i = (i_2,i_3,i_5,\ldots) = (i_p)_p $ with all $i_p \in \hat{\mathbb{Q}}_p^* $ and for all but finitely many primes we have that $i_p \in \hat{\mathbb{Z}}_p^* $.

As we will have to do explicit calculations with ideles and adeles we need to recall some facts about the structure of the unit groups $\hat{\mathbb{Z}}_p^* $ and $\hat{\mathbb{Q}}_p^* $. If we denote $U = \hat{\mathbb{Z}}_p^* $, then projecting it to the unit group of each of its components we get for each natural number n an exact sequence of groups

$1 \rightarrow U_n \rightarrow U \rightarrow (\mathbb{Z}/p^n \mathbb{Z})^* \rightarrow 1 $. In particular, we have that $U/U_1 \simeq (\mathbb{Z}/p\mathbb{Z})^* \simeq \mathbb{Z}/(p-1)\mathbb{Z} $ as the group of units of the finite field $\mathbb{F}_p $ is cyclic of order p-1. But then, the induced exact sequence of finite abalian groups below splits

$1 \rightarrow U_1/U_n \rightarrow U/U_n \rightarrow \mathbb{F}_p^* \rightarrow 1 $ and as the unit group $U = \underset{\leftarrow}{lim} U/U_n $ we deduce that $U = U_1 \times V $ where $\mathbb{F}_p^* \simeq V = { x \in U | x^{p-1}=1 } $ is the specified unique subgroup of $U $ of order p-1. All that remains is to determine the structure of $U_1 $. If $p \not= 2 $, take $\alpha = 1 + p \in U_1 – U_2 $ and let $\alpha_n \in U_1/U_n $ denote the image of $\alpha $, then one verifies that $\alpha_n $ is a cyclic generator of order $p^{n-1} $ of $U_1/U_n $.

But then, if we denote the isomorphism $\theta_n~:~\mathbb{Z}/p^{n-1} \mathbb{Z} \rightarrow U_1/U_n $ between the ADDITIVE group $\mathbb{Z}/p^{n-1} \mathbb{Z} $ and the MULTIPLICATIVE group $U_1/U_n $ by the map $z \mapsto \alpha_n^z $, then we have a compatible commutative diagram

[tex]\xymatrix{\mathbb{Z}/p^n \mathbb{Z} \ar[r]^{\theta_{n+1}} \ar[d] & U_1/U_{n+1} \ar[d] \\
\mathbb{Z}/p^{n-1} \mathbb{Z} \ar[r]^{\theta_n} & U_1/U_n}[/tex]

and as $U_1 = \underset{\leftarrow}{lim}~U_1/U_n $ this gives an isomorphism between the multiplicative group $U_1 $ and the additive group of $\hat{\mathbb{Z}}_p $. In case $p=2 $ we have to start with an element $\alpha \in U_2 – U_3 $ and repeat the above trick. Summarizing we have the following structural information about the unit group of p-adic integers

$\hat{\mathbb{Z}}_p^* \simeq \begin{cases} \hat{\mathbb{Z}}_{p,+} \times \mathbb{Z}/(p-1)\mathbb{Z}~(p \not= 2) \\ \hat{\mathbb{Z}}_{2,+} \times \mathbb{Z}/2 \mathbb{Z}~(p=2) \end{cases}$

Because every unit in $\hat{\mathbb{Q}}_p^* $ can be written as $p^n u $ with $u \in \hat{\mathbb{Z}}_p^* $ we deduce from this also the structure of the unit group of the p-adic field

$\hat{\mathbb{Q}}_p^* \simeq \begin{cases} \mathbb{Z} \times \hat{\mathbb{Z}}_{p,+} \times \mathbb{Z}/(p-1)\mathbb{Z}~(p \not= 2) \\ \mathbb{Z} \times \hat{\mathbb{Z}}_{2,+} \times \mathbb{Z}/2 \mathbb{Z}~(p=2) \end{cases} $

Right, now let us start to make the connection with the apparently abstract ringtheoretical post from last time where we introduced semigroup crystalline graded rings without explaining why we wanted that level of generality.

Consider the semigroup $\mathcal{I} \cap \mathcal{R} $, that is all ideles $i = (i_p)_p $ with all $i_p = p^{n_p} u_p $ with $u_p \in \hat{\mathbb{Z}}_p^* $ and $n_p \in \mathbb{N} $ with $n_p=0 $ for all but finitely many primes p. Then, we have an exact sequence of semigroups

$1 \rightarrow \mathcal{G} \rightarrow \mathcal{I} \cap \mathcal{R} \rightarrow^{\pi} \mathbb{N}^+_{\times} \rightarrow 1 $ where the map is defined (with above notation) $\pi(i) = \prod_p p^{n_p} $ and exactness follows from the above structural results when we take $\mathcal{G} = \prod_p \hat{\mathbb{Z}}_p^* $.

This gives a glimpse of where we are heading. Last time we identified the Bost-Connes Hecke algebra $\mathcal{H} $ as a bi-crystalline group graded algebra determined by a $\mathbb{N}^+_{\times} $-semigroup crystalline graded algebra over the group algebra $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $. Next, we will entend this construction starting from a $\mathcal{I} \cap \mathcal{R} $-semigroup crystalline graded algebra over the same group algebra. The upshot is that we will have a natural action by automorphisms of the group $\mathcal{G} $ on the Bost-Connes algebra. And… the group $\mathcal{G} = \prod_p \hat{\mathbb{Z}}_p^* $ is the Galois group of the cyclotomic field extension $\mathbb{Q}^{cyc} $!

But, in order to begin to understand this, we will need to brush up our rusty knowledge of algebraic number theory…

Leave a Comment

Anabelian & Noncommutative Geometry 2

Last time (possibly with help from the survival guide) we have seen that the universal map from the modular group $\Gamma = PSL_2(\mathbb{Z}) $ to its profinite completion $\hat{\Gamma} = \underset{\leftarrow}{lim}~PSL_2(\mathbb{Z})/N $ (limit over all finite index normal subgroups $N $) gives an embedding of the sets of (continuous) simple finite dimensional representations

$\mathbf{simp}_c~\hat{\Gamma} \subset \mathbf{simp}~\Gamma $

and based on the example $\mu_{\infty} = \mathbf{simp}_c~\hat{\mathbb{Z}} \subset \mathbf{simp}~\mathbb{Z} = \mathbb{C}^{\ast} $ we would like the above embedding to be dense in some kind of noncommutative analogon of the Zariski topology on $\mathbf{simp}~\Gamma $.

We use the Zariski topology on $\mathbf{simp}~\mathbb{C} \Gamma $ as in these two M-geometry posts (( already, I regret terminology, I should have just called it noncommutative geometry )). So, what’s this idea in this special case? Let $\mathfrak{g} $ be the vectorspace with basis the conjugacy classes of elements of $\Gamma $ (that is, the space of class functions). As explained here it is a consequence of the Artin-Procesi theorem that the linear functions $\mathfrak{g}^{\ast} $ separate finite dimensional (semi)simple representations of $\Gamma $. That is we have an embedding

$\mathbf{simp}~\Gamma \subset \mathfrak{g}^{\ast} $

and we can define closed subsets of $\mathbf{simp}~\Gamma $ as subsets of simple representations on which a set of class-functions vanish. With this definition of Zariski topology it is immediately clear that the image of $\mathbf{simp}_c~\hat{\Gamma} $ is dense. For, suppose it would be contained in a proper closed subset then there would be a class-function vanishing on all simples of $\hat{\Gamma} $ so, in particular, there should be a bound on the number of simples of finite quotients $\Gamma/N $ which clearly is not the case (just look at the quotients $PSL_2(\mathbb{F}_p) $).

But then, the same holds if we replace ‘simples of $\hat{\Gamma} $’ by ‘simple components of permutation representations of $\Gamma $’. This is the importance of Farey symbols to the representation problem of the modular group. They give us a manageable subset of simples which is nevertheless dense in the whole space. To utilize this a natural idea might be to ask what such a permutation representation can see of the modular group, or in geometric terms, what the tangent space is to $\mathbf{simp}~\Gamma $ in a permutation representation (( more precisely, in the ‘cluster’ of points making up the simple components of the representation representation )). We will call this the modular content of the permutation representation and to understand it we will have to compute the tangent quiver $\vec{t}~\mathbb{C} \Gamma $.

Leave a Comment

profinite groups survival guide

Even if you don’t know the formal definition of a profinte group, you know at least one example which explains the concept : the Galois group of the algebraic numbers $Gal = Gal(\overline{\mathbb{Q}}/\mathbb{Q}) $ aka the absolute Galois group. By definition it is the group of all $\mathbb{Q} $-isomorphisms of the algebraic closure $\overline{\mathbb{Q}} $. Clearly, it is an object of fundamental importance for mathematics but in spite of this very little is known about it. For example, it obviously is an infinite group but, apart from the complex conjugation, try to give one (1!) other nontrivial element… On the other hand we know lots of finite quotients of $Gal $. For, take any finite Galois extension $\mathbb{Q} \subset K $, then its Galois group $G_K = Gal(K/\mathbb{Q}) $ is a finite group and there is a natural onto morphism $\pi_K~:~Gal \rightarrow G_K $ obtained by dividing out all $K $-automorphisms of $\overline{\mathbb{Q}} $. Moreover, all these projections fit together nicely. If we take a larger Galois extension $K \subset L $ then classical Galois theory tells us that there is a projection $\pi_{LK}~:~G_L \rightarrow G_K $ by dividing out the normal subgroup of all $K $-automorphisms of $L $ and these finite maps are compatible with those from the absolute Galois group, that is, for all such finite Galois extensions, the diagram below is commutative

[tex]\xymatrix{Gal \ar[rr]^{\pi_L} \ar[rd]_{\pi_K} & & G_L \ar[ld]^{\pi_{LK}} \\
& G_K &}[/tex]

By going to larger and larger finite Galois extensions $L $ we get closer and closer to the algebraic closure $\overline{Q} $ and hence a better and better finite approximation $G_L $ of the absolute Galois group $Gal $. Still with me? Congratulations, you just rediscovered the notion of a profinite group! Indeed, the Galois group is the projective limit

$Gal = \underset{\leftarrow}{lim}~G_L $

over all finite Galois extensions $L/\mathbb{Q} $. If the term ‘projective limit’ scares you off, it just means that all the projections $\pi_{KL} $ coming from finite Galois theory are compatible with those coming from the big Galois group as before. That’s it : profinite groups are just projective limits of finite groups.

These groups come equipped with a natural topology : the Krull topology. Again, this notion is best clarified by considering the absolute Galois group. Now that we have $Gal $ we would like to extend the classical Galois correspondence between subgroups and subfields $\mathbb{Q} \subset K \subset \overline{\mathbb{Q}} $ and between normal subgroups and Galois subfields. For each finite Galois extension $K/\mathbb{Q} $ we have a normal subgroup of finite index, the kernel $U_K=Ker(\pi_K) $ of the projection map above. Let us take the set of all $U_K $ as a fundamental system of neighborhoods of the identity element in $Gal $. This defines a topology on $Gal $ and this is the Krull topology. As every open subgroup has finite index it is clear that this turns $Gal $ into a compact topological group. Its purpose is that we can now extend the finite Galois correspondence to Krull’s Galois theorem :

There is a bijective lattice inverting Galois correspondence between the set of all closed subgroups of $Gal $ and the set of all subfields $\mathbb{Q} \subset F \subset \overline{\mathbb{Q}} $. Finite field extensions correspond in this bijection to open subgroups and the usual normal subgroup and factor group correspondences hold!

So far we had a mysterious group such as $Gal $ and reconstructed it from all its finite quotients as a projective limit. Now we can reverse the situation : suppose we have a wellknown group such as the modular group $\Gamma = PSL_2(\mathbb{Z}) $, then we can look at the set of all its normal subgroups $U $ of finite index. For each of those we have a quotient map to a finite group $\pi_U~:~\Gamma \rightarrow G_U $ and clearly if $U \subset V $ we have a quotient map of finite groups $\pi_{UV}~:~G_U \rightarrow G_V $ compatible with the quotient maps from $\Gamma $

[tex]\xymatrix{\Gamma \ar[rr]^{\pi_U} \ar[rd]_{\pi_V} & & G_U \ar[ld]^{\pi_{UV}} \\
& G_V &}[/tex]

For the family of finite groups $G_U $ and groupmorphisms $\pi_{UV} $ we can ask for the ‘best’ group mapping to each of the $G_U $ compatible with the groupmaps $G_{UV} $. By ‘best’ we mean that any other group with this property will have a morphism to the best-one such that all quotient maps are compatible. This ‘best-one’ is called the projective limit

$\hat{\Gamma} = \underset{\leftarrow}{lim}~G_U $

and as a profinite group it has again a Krull topology making it into a compact group. Because the modular group $\Gamma $ had quotient maps to all the $G_U $ we know that there must be a groupmorphism to the best-one
$\phi~:~\Gamma \rightarrow \hat{\Gamma} $ and therefore we call $\hat{\Gamma} $ the profinite compactification (or profinite completion) of the modular group.

A final remark about finite dimensional representations. Every continuous complex representation of a profinite group like the absolute Galois group $Gal \rightarrow GL_n(\mathbb{C}) $ has finite image and this is why they are of little use for people studying the Galois group as it conjecturally reduces the study of these representations to ‘just’ all representations of all finite groups. Instead they consider representations to other topological fields such as p-adic numbers $Gal \rightarrow GL_n(\mathbb{Q}_p) $ and call these Galois representations.

For people interested in Grothendieck’s dessins d’enfants, however, continuous complex representations of the profinite compactification $\hat{\Gamma} $ is exactly their object of study and via the universal map $\phi~:~\Gamma \rightarrow \hat{\Gamma} $ above we have an embedding

$\mathbf{rep}_c~\hat{\Gamma} \rightarrow \mathbf{rep}~\Gamma $

of them in all finite dimensional representations of the modular group (
and we have a similar map restricted to simple representations). I hope this clarifies a bit obscure terms in the previous post. If not, drop a comment.

Leave a Comment