Skip to content →

Tag: Smullyan

the strange island of two truths

Last time we had a brief encounter with the island of two truths, invented by Karin Cvetko-Vah. See her posts:

On this island, false statements have truth-value $0$ (as usual), but non-false statements are not necessarily true, but can be given either truth-value $Q$ (statements which the Queen on the island prefers) or $K$ (preferred by the King).

Think of the island as Trump’s paradise where nobody is ever able to say: “Look, alternative truths are not truths. They’re falsehoods.”



Even the presence of just one ‘alternative truth’ has dramatic consequences on the rationality of your reasoning. If we know the truth-values of specific sentences, we can determine the truth-value of more complex sentences in which we use logical connectives such as $\vee$ (or), $\wedge$ (and), $\neg$ (not), and $\implies$ (then) via these truth tables:

\[
\begin{array}{c|ccc}
\downarrow~\bf{\wedge}~\rightarrow & 0 & Q & K \\
\hline
0 & 0 & 0 & 0 \\
Q & 0 & Q & Q \\
K & 0 & K & K
\end{array} \quad
\begin{array}{c|ccc}
\downarrow~\vee~\rightarrow & 0 & Q & K \\
\hline
0 & 0 & Q & K \\
Q & Q & Q & K \\
K & K & Q & K
\end{array} \]
\[
\begin{array}{c|ccc}
\downarrow~\implies~\rightarrow & 0 & Q & K \\
\hline
0 & Q & Q & K \\
Q & 0 & Q & K \\
K & 0 & Q & K
\end{array} \quad
\begin{array}{c|c}
\downarrow & \neg~\downarrow \\
\hline
0 & Q \\
Q & 0 \\
K & 0
\end{array}
\]

Note that the truth-values $Q$ and $K$ are not completely on equal footing as we have to make a choice which one of them will stand for $\neg 0$.

Common tautologies are no longer valid on this island. The best we can have are $Q$-tautologies (giving value $Q$ whatever the values of the components) or $K$-tautologies.

Here’s one $Q$-tautology (check!) : $(\neg p) \vee (\neg \neg p)$. Verify that $p \vee (\neg p)$ is neither a $Q$- nor a $K$-tautology.

Can you find any $K$-tautology at all?

Already this makes it incredibly difficult to adapt Smullyan-like Knights and Knaves puzzles to this skewed island. Last time I gave one easy example.



Puzzle : On an island of two truths all inhabitants are either Knaves (saying only false statements), Q-Knights (saying only $Q$-valued statements) or K-Knights (who only say $K$-valued statements).

The King came across three inhabitants, whom we will call $A$, $B$ and $C$. He asked $A$: “Are you one of my Knights?” $A$ answered, but so indistinctly that the King could not understand what he said.

He then asked $B$: “What did he say?” $B$ replies: “He said that he is a Knave.” At this point, $C$ piped up and said: “That’s not true!”

Was $C$ a Knave, a Q-Knight or a K-Knight?

Solution : Q- and K-Knights can never claim to be a Knave. Neither can Knaves because they can only say false statements. So, no inhabitant on the island can ever claim to be a Knave. So, $B$ lies and is a Knave, so his stament has truth-value $0$. $C$ claims the negation of what $B$ says so the truth-value of his statement is $\neg 0 = Q$. $C$ must be a Q-Knight.

As if this were not difficult enough, Karin likes to complicate things by letting the Queen and King assign their own truth-values to all sentences, which may coincide with their actual truth-value or not.

Clearly, these two truth-assignments follow the logic of the island of two truths for composed sentences, and we impose one additional rule: if the Queen assigns value $0$ to a statement, then so does the King, and vice versa.

I guess she wanted to set the stage for variations to the island of two truths of epistemic modal logical puzzles as in Smullyan’s book Forever Undecided (for a quick summary, have a look at Smullyan’s paper Logicians who reason about themselves).

A possible interpretation of the Queen’s truth-assignment is that she assigns value $Q$ to all statements she believes to be true, value $0$ to all statements she believes to be false, and value $K$ to all statements she has no fixed opinion on (she neither believes them to be true nor false). The King assigns value $K$ to all statements he believes to be true, $0$ to those he believes to be false, and $Q$ to those he has no fixed opinion on.

For example, if the Queen has no fixed opinion on $p$ (so she assigns value $K$ to it), then the King can either believe $p$ (if he also assigns value $K$ to it) or can have no fixed opinion on $p$ (if he assigns value $Q$ to it), but he can never believe $p$ to be false.



Puzzle : We say that Queen and King ‘agree’ on a statement $p$ if they both assign the same value to it. So, they agree on all statements one of them (and hence both) believe to be false. But there’s more:

  • Show that Queen and King agree on the negation of all statements one of them believes to be false.
  • Show that the King never believes the negation of whatever statement.
  • Show that the Queen believes all negations of statements the King believes to be false.

Solution : If one of them believes $p$ to be false (s)he will assign value $0$ to $p$ (and so does the other), but then they both have to assign value $Q$ to $\neg p$, so they agree on this.

The value of $\neg p$ can never be $K$, so the King does not believe $\neg p$.

If the King believes $p$ to be false he assigns value $0$ to it, and so does the Queen, but then the value of $\neg p$ is $Q$ and so the Queen believes $\neg p$.

We see that the Queen and King agree on a lot of statements, they agree on all statements one of them believes to be false, and they agree on the negation of such statements!

Can you find any statement at all on which they do not agree?

Well, that may be a little bit premature. We didn’t say which sentences about the island are allowed, and what the connection (if any) is between the Queen and King’s value-assignments and the actual truth values.

For example, the Queen and King may agree on a classical ($0$ or $1$) truth-assignments to the atomic sentences for the island, and replace all $1$’s with $Q$. This will give a consistent assignment of truth-values, compatible with the island’s strange logic. (We cannot do the same trick replacing $1$’s by $K$ because $\neg 0 = Q$).

Clearly, such a system may have no relation at all with the intended meaning of these sentences on the island (the actual truth-values).

That’s why Karin Cvetko-Vah introduced the notions of ‘loyalty’ and ‘sanity’ for inhabitants of the island. That’s for next time, and perhaps then you’ll be able to answer the question whether Queen and King agree on all statements.

(all images in this post are from Smullyan’s book Alice in Puzzle-Land)

Comments closed

some skew Smullyan stumpers

Raymond Smullyan‘s logic puzzles are legendary. Among his best known are his Knights (who always tell the truth) and Knaves (who always lie) puzzles. Here’s a classic example.

“On the day of his arrival, the anthropologist Edgar Abercrombie came across three inhabitants, whom we will call $A$, $B$ and $C$. He asked $A$: “Are you a Knight or a Knave?” $A$ answered, but so indistinctly that Abercrombie could not understand what he said.

He then asked $B$: “What did he say?” $B$ replies: “He said that he is a knave.” At this point, $C$ piped up and said: “Don’t believe that; it’s a lie!”

Was $C$ a Knight or a Knave?”

If you are stumped by this, try to figure out what kind of inhabitant can say “I am a Knave”.

Some years ago, my friend and co-author Karin Cvetko-Vah wrote about a much stranger island, the island of two truths.

“The island was ruled by a queen and a king. It is important to stress that the queen was neither inferior nor superior to the king. Rather than as a married couple one should think of the queen and the king as two parallel powers, somewhat like the Queen of the Night and the King Sarastro in Mozart’s famous opera The Magic Flute. The queen and the king had their own castle each, each of them had their own court, their own advisers and servants, and most importantly each of them even had their own truth value.

On the island, a proposition p is either FALSE, Q-TRUE or K-TRUE; in each of the cases we say that p has value 0, Q or K, respectively. The queen finds the truth value Q to be superior, while the king values the most the value K. The queen and the king have their opinions on all issues, while other residents typically have their opinions on some issues but not all.”

The logic of the island of two truths is the easiest example of what Karin and I called a non-commutative frame or skew Heyting algebra (see here), a notion we then used, jointly with Jens Hemelaer, to define the notion of a non-commutative topos.

If you take our general definitions, and take Q as the distinguished top-element, then the truth tables for the island of two truths are these ones (value of first term on the left, that of the second on top):

\[
\begin{array}{c|ccc}
\wedge & 0 & Q & K \\
\hline
0 & 0 & 0 & 0 \\
Q & 0 & Q & Q \\
K & 0 & K & K
\end{array} \quad
\begin{array}{c|ccc}
\vee & 0 & Q & K \\
\hline
0 & 0 & Q & K \\
Q & Q & Q & K \\
K & K & Q & K
\end{array} \quad
\begin{array}{c|ccc}
\rightarrow & 0 & Q & K \\
\hline
0 & Q & Q & K \\
Q & 0 & Q & K \\
K & 0 & Q & K
\end{array} \quad
\begin{array}{c|c}
& \neg \\
\hline
0 & Q \\
Q & 0 \\
K & 0
\end{array}
\]

Note that on this island the order of statements is important! That is, the truth value of $p \wedge q$ may differ from that of $q \wedge p$ (and similarly for $\vee$).

Let’s reconsider Smullyan’s puzzle at the beginning of this post, but now on an island of two truths, where every inhabitant is either of Knave, or a Q-Knight (uttering only Q-valued statements), or a K-Knight (saying only K-valued statements).

Again, can you determine what type $C$ is?

Well, if you forget about the distinction between Q- and K-valued sentences, then we’re back to classical logic (or more generally, if you divide out Green’s equivalence relation from any skew Heyting algebra you obtain an ordinary Heyting algebra), and we have seen that then $B$ must be a Knave and $C$ a Knight, so in our new setting we know that $C$ is either a Q-Knight or a K-Knight, but which of the two?

Now, $C$ claims the negation of what $B$ said, so the truth value is $\neg 0 = Q$, and therefore $C$ must be a Q-Knight.

Recall that in Karin Cvetko-Vah‘s island of two truths all sentences have a unique value which can be either $0$ (false) or one of the non-false values Q or K, and the value of combined statements is given by the truth tables above. The Queen and King both have an opinion on all statements, which may or may not coincide with the actual value of that statement. However, if the Queen assigns value $0$ to a statement, then so does the King, and conversely.

Other inhabitants of the island have only their opinion about a subset of all statements (which may be empty). Two inhabitants agree on a statement if they both have an opinion on it and assign the same value to it.

Now, each inhabitant is either loyal to the Queen or to the King (or both), meaning that they agree with the Queen (resp. King) on all statements they have an opinion of. An inhabitant loyal to the Queen is said to believe a sentence when she assigns value $Q$ to it (and symmetric for those loyal to the King), and knows the statement if she believes it and that value coincides with the actual value of that statement.

Further, if A is loyal to the Queen, then the value of the statement ‘A is loyal to the Queen’ is Q, and if A is not loyal to the Queen, then the value of the sentence ‘A is loyal to the Queen’ is $0$ (and similarly for statements about loyalty to the King).

These notions are enough for the first batch of ten puzzles in Karin’s posts

Just one example:

Show that if anybody on the island knows that A is not loyal to the Queen, then everybody that has an opinion about the sentence ‘A is loyal to the Queen’ knows that.

After these two posts, Karin decided that it was more fun to blog about the use of non-commutative frames in data analysis.

But, she once gave me a text containing many more puzzles (as well as all the answers), so perhaps I’ll share these in a follow-up post.

Comments closed

Boolean and Heyting islands

Raymond Smullyan‘s logic puzzles frequently involve Knights (who always tell the truth) and Knaves (who always lie).

In his book Logical Labyrinths (really a first course in propositional logic) he introduced islands where the lying or truth-telling habits can vary from day to day—that is, an inhabitant might lie on some days and tell the truth on other days, but on any given day, he or she lies the entire day or tells the truth the entire day.

An island is said to be Boolean if is satisfies the following conditions:

  • $\mathbf{N}$ : For any inhabitant $A$ there is an inhabitant who tells the truth on all and only those days on which $A$ lies.
  • $\mathbf{M}$ : For any inhabitants $A$ and $B$ there is an inhabitant $C$ who tells the truth on all and only those days on which $A$ and $B$ both tell the truth.
  • $\mathbf{J}$ : For any inhabitants $A$ and $B$ there is an inhabitant $C$ who tells the truth on all and only those days on which either $A$ tells the truth or $B$ tells the truth (or both). (In other words, $C$ lies on those and only those days on which $A$ and $B$ both lie.)

On any given day there are only Knights and Knaves on the island, but these two populations may vary from one day to the other. The subsets (of all days) for which there is an inhabitant who is a Knight then and a Knave on all other days form a Boolean algebra with operations $\wedge = \cap$ ($\mathbf{M}$eet), $\vee= \cup$ ($\mathbf{J}$oin) and $\neg=$ set-complement ($\mathbf{N}$egation).

Here’s a nice puzzle from Smullyan’s book:

Solomon’s Island also turned out to be quite interesting. When Craig arrived on it, he had the following conversation with the resident sociologist:

Craig : Is this island a Boolean island?
Sociologist : No.
Craig : Can you tell me something about the lying and truth-telling habits of the residents here?
Sociologist : For any inhabitants $A$ and $B$, there is an inhabitant $C$ who tells the truth on all and only those days on which either $A$ lies or $B$ lies (or both).

Show that the sociologist didn’t go native, and that his research is lousy.
(My wording, not Smullyan’s)

Smullyan’s version: This interview puzzled inspector Craig; he felt that something was wrong. After a while he realized for sure that something was wrong, the sociologist was either lying or mistaken!

Extending Smullyan’s idea, we can say that an island is Heyting if, in addition to $\mathbf{M}$ and $\mathbf{J}$ is satisfies the following rules

  • $\mathbf{T}$ : at least one inhabitant tells the truth on all days.
  • $\mathbf{F}$ : at least one inhabitant lies on all days.
  • $\mathbf{I}$ : For any inhabitants $A$ and $B$ there is an inhabitant $C$ sharing Knight-days with $A$ only when $B$ tells the truth, and there are no inhabitants doing this while telling the truth on more days than $C$.

Let’s give an example of an Heyting island which is not Boolean.

On Three-island there are only three kinds of people: Knights, Knaves and Alternates, who can neither lie nor tell the truth two days in a row. All Alternates tell the truth on the same days.

Here’s a riddle:

You meet John, who is a Knight, James, an Alternate, and William, a Knave. You don’t know who is who. You can only ask one question containing at most four words, giving you a Yes or No answer, to just one of the three. The answer must tell you whether that person is James or not.

You may like to watch Smullyan on the Carson show for a hint.

Or, you might just watch it reminiscing long forgotten times, when talkshow-hosts still listened to their guests, and could think for themselves…

Comments closed