Skip to content →

Tag: Riemann

now what?

You may not have noticed, but the really hard work was done behind the scenes, resurrecting about 300 old posts (some of them hidden by giving them ‘private’-status). Ive only deleted about 10 posts with little or no content and am sorry I’ve self-destructed about 20-30 hectic posts over the years by pressing the ‘delete post’ button. I would have liked to reread them after all the angry mails Ive received. But, as Ive defended myself at the time, and as I continue to do today, a blog only records feelings at a specific moment. Often, the issue is closed for me once Ive put my frustrations in a post, and then Ill forget all about it. Sadly, the gossip-circuit in noncommutative circles is a lot, a lot, slower than my mood swings, so by the time people complain it’s no longer an issue for me and I tend to delete the post altogether. A blog really is a sort of diary. For example, it only struck me now, rereading the posts of the end of 2006, beginning of 2007, how depressed I must have been at the time. Fortunately, life has improved, somewhat… Still, after all these reminiscences, the real issue is : what comes next?

Some of you may have noticed that I’ve closed the open series on tori-cryptography and on superpotentials in a rather abrupt manner. It took me that long to realize that none of you is waiting for this kind of posts. You’re thinking : if he really wants to show off, let him do his damned thing on the arXiv, a couple of days a year, at worst, and then we can then safely ignore it, like we do with most papers. Isnt’t that true? Of course it is…

So, what are you waiting for? Here’s what I believe to be a sensible thing to try out. Over the last 4 years I must have posted well over 50 times what I believe noncommutative geometry is all about, so if you still don’t know, please consult the archive, I fear I can only repeat myself. Probably, it is more worthwhile to reach out to other approaches to noncommutative geometry, trying to figure out what, if anything, they are after, without becoming a new-age convert (‘connes-vert’, I’d say). The top-left picture may give you an inkling of what I’m after… Besides, Im supposed to run a ‘capita selecta’ course for third year Bachelors and Ive chosen to read with them the book The music of the primes and to expand on the mathematics hinted only at in the book. So, I’ll totally immerse myself in Connes’ project to solve the Riemann-hypothesis in the upcoming months.

Again, rereading old posts, it strikes me how much effort I’ve put into trying to check whether technology can genuinely help mathematicians to do what they want to do more efficiently (all post categorized as iMath). I plan some series of posts re-exploring these ideas. The first series will be about the overhyped Web-2 thing of social-bookmarking. So, in the next weeks I’ll go undercover and check out which socialsites are best for mathematicians (in particular, noncommutative geometers) to embrace…

Apart from these, admittedly vague, plans I am as always open for suggestions you might have. So, please drop a comment..

Leave a Comment

mathematics for 2008 (and beyond)

Via the n-category cafe (and just now also the Arcadian functor ) I learned that Benjamin Mann of DARPA has constructed a list of 23 challenges for mathematics for this century.

DARPA is the “Defense Advanced Research Projects Agency” and is an agency of the United States Department of Defense ‘responsible for the development of new technology for use by the military’.

Bejamin Mann is someone in their subdivision DSO, that is, the “Defense Sciences Office” that ‘vigorously pursues the most promising technologies within a broad spectrum of the science and engineering research communities and develops those technologies into important, radically new military capabilities’.

I’m not the greatest fan of the US military, but the proposed list of 23 mathematical challenges is actually quite original and interesting.

What follows is my personal selection of what I consider the top 5 challenges from the list (please disagree) :

1. The Mathematics of Quantum Computing, Algorithms, and Entanglement (DARPA 15) : “In the last century we learned how quantum phenomena shape
our world. In the coming century we need to develop the
mathematics required to control the quantum world.”

2. Settle the Riemann Hypothesis (DARPA 19) : “The Holy Grail of number theory.”

3. Geometric Langlands and Quantum Physics (DARPA 17) : “How does the Langlands program, which originated in number
theory and representation theory, explain the fundamental
symmetries of physics? And vice versa?”

4. The Geometry of Genome Space (DARPA 15) : “What notion of distance is needed to incorporate biological utility?”

5. Algorithmic Origami and Biology (DARPA 10) : “Build a stronger mathematical theory for isometric and rigid
embedding that can give insight into protein folding.”

All of this will have to wait a bit, for now

HAPPY & HEALTHY 2008

Leave a Comment

recycled : dessins

In a couple of days I’ll be blogging for 4 years… and I’m in the process of resurrecting about 300 posts from a database-dump made in june. For example here’s my first post ever which is rather naive. This conversion program may last for a couple of weeks and I apologize for all unwanted pingbacks it will produce.

I’ll try to convert chunks of related posts in one go, so that I can at least give them correct self-references. Today’s work consisted in rewriting the posts of my virtual course, in march of this year, on dessins d’enfants and its connection to noncommutative geometry (a precursor of what Ive been blogging about recently). These posts were available through the PDF-archive but are from now on open to the internal search-function. Here are the internal links and a short description of their contents

Besides, I’ve added a few scattered old posts, many more to follow…

Leave a Comment