Skip to content →

Tag: quivers

changes

Tomorrow
I’ll give my last class of the semester (year?) so it is about time to
think about things to do (such as preparing the courses for the
“master program on noncommutative geometry”) and changes to make to
this weblog (now that it passed the 25000 mark it is time for something
different). In the sidebar I’ve added a little poll to let you guess
what changes 2005 will bring to this blog (if I find the time over
Christmas to implement it). In short, @matrix will
become the portal of a little company I’ll start up (seems
_the_ thing to do now). Here are some possible names/goals. Which
one will it be? Vote and find out after Christmas.

WebMathNess is a Web-service company helping lazy
mathematicians to set up their website and make it LaTeXRender savvy
(free restyling every 6 months).

iHomeEntertaining is a
Tech-company helping Mac-families to get most out of their valuable
computers focussing on Audio-Photo-Video streaming along their Airport-network.

SnortGipfGames is a Game-company focussing on the
mathematical side of the Gipf project
games
by distributing Snort-versions of them.

NeverendingBooks is a Publishing-company specializing
in neverending mathematical course- and book-projects offering their
hopeless authors print on demand and eprint services.

QuiverMerch is a Merchandising-company specializing in
quivers. For example, T-shirts with the tame quiver classification,
Calogero-Moser coffee mugs, Lego-boxes to construct local quivers
etc.

Leave a Comment

curvatures

[Last
time][1] we saw that the algebra $(\Omega_V~C Q,Circ)$ of relative
differential forms and equipped with the Fedosov product is again the
path algebra of a quiver $\tilde{Q}$ obtained by doubling up the arrows
of $Q$. In our basic example the algebra map $C \tilde{Q} \rightarrow
\Omega_V~C Q$ is clarified by the following picture of $\tilde{Q}$
$\xymatrix{\vtx{} \ar@/^/[rr]^{a=u+du} \ar@/_/[rr]_{b=u-du} & &
\vtx{} \ar@(u,ur)^{x=v+dv} \ar@(d,dr)_{y=v-dv}} $ (which
generalizes in the obvious way to arbitrary quivers). But what about the
other direction $\Omega_V~C Q \rightarrow C \tilde{Q}$ ? There are two
embeddings $i,j : C Q \rightarrow C \tilde{Q}$ defined by $i : (u,v)
\rightarrow (a,x)$ and $j : (u,v) \rightarrow (b,y)$ giving maps
$\forall a \in C Q~:~p(a) = \frac{1}{2}(i(a)+j(a))~\quad~q(a) =
\frac{1}{2}(i(a)-j(a))$ Using these maps, the isomorphism $\Omega_V~C
Q \rightarrow C \tilde{Q}$ is determined by $ a_0 da_1 \ldots da_n
\rightarrow p(a_0)q(a_1) \ldots q(a_n)$ In particular, $p$ gives the
natural embedding (with the ordinary multiplication on differential
forms) $C Q \rightarrow \Omega_V~C Q$ of functions as degree zero
differential forms. However, $p$ is no longer an algebra map for the
Fedosov product on $\Omega_V~C Q$ as $p(ab) = p(a)Circ p(b) + q(a) Circ
q(b)$. In Cuntz-Quillen terminology, $\omega(a,b) = q(a) Circ q(b)$ is
the _curvature_ of the based linear map $p$. I\’d better define
this a bit more formal for any algebra $A$ and then say what is special
for formally smooth algebras (non-commutative manifolds). If $A,B$ are
$V = C \times \ldots \times C$-algebras, then a $V$-linear map $A
\rightarrow^l B$ is said to be a _based linear map_ if $ l | V = id_V$.
The _curvature_ of $l$ measures the obstruction to $l$ being an algebra
map, that is $\forall a,b \in A~:~\omega(a,b) = l(ab)-l(a)l(b)$ and
the curvature is said to be _nilpotent_ if there is an integer $n$ such
that all possible products $\omega(a_1,b_1)\omega(a_2,b_2) \ldots
\omega(a_n,b_n) = 0$ For any algebra $A$ there is a universal algebra
$R(A)$ turning based linear maps into algebra maps. That is, there is a
fixed based linear map $A \rightarrow^p R(A)$ such that for every based
linear map $A \rightarrow^l B$ there is an algebra map $R(A) \rightarrow
B$ making the diagram commute $\xymatrix{A \ar[r]^l \ar[d]^p & B
\\\ R(A) \ar[ru] &} $ In fact, Cuntz and Quillen show that $R(A)
\simeq (\Omega_V^{ev}~A,Circ)$ the algebra of even differential forms
equipped with the Fedosov product and that $p$ is the natural inclusion
of $A$ as degree zero forms (as above). Recall that $A$ is said to be
_formally smooth_ if every $V$-algebra map $A \rightarrow^f B/I$ where
$I$ is a nilpotent ideal, can be lifted to an algebra morphism $A
\rightarrow B$. We can always lift $f$ as a based linear map, say
$\tilde{f}$ and because $I$ is nilpotent, the curvature of $\tilde{f}$
is also nilpotent. To get a _uniform_ way to construct algebra lifts
modulo nilpotent ideals it would therefore suffice for a formally smooth
algebra to have an _algebra map_ $A \rightarrow \hat{R}(A)$ where
$\hat{R}(A)$ is the $\mathfrak{m}$-adic completion of $R(A)$ for the
ideal $\mathfrak{m}$ which is the kernel of the algebra map $R(A)
\rightarrow A$ corresponding to the based linear map $id_A : A
\rightarrow A$. Indeed, there is an algebra map $R(A) \rightarrow B$
determined by $\tilde{f}$ and hence also an algebra map $\hat{R}(A)
\rightarrow B$ and composing this with the (yet to be constructed)
algebra map $A \rightarrow \hat{R}(A)$ this would give the required lift
$A \rightarrow B$. In order to construct the algebra map $A
\rightarrow \hat{R}(A)$ (say in the case of path algebras of quivers) we
will need the Yang-Mills derivation and its associated flow.

[1]: https://lievenlb.local/index.php?p=354

Leave a Comment

cotangent bundles

The
previous post in this sequence was [moduli spaces][1]. Why did we spend
time explaining the connection of the quiver
$Q~:~\xymatrix{\vtx{} \ar[rr]^a & & \vtx{} \ar@(ur,dr)^x} $
to moduli spaces of vectorbundles on curves and moduli spaces of linear
control systems? At the start I said we would concentrate on its _double
quiver_ $\tilde{Q}~:~\xymatrix{\vtx{} \ar@/^/[rr]^a && \vtx{}
\ar@(u,ur)^x \ar@(d,dr)_{x^*} \ar@/^/[ll]^{a^*}} $ Clearly,
this already gives away the answer : if the path algebra $C Q$
determines a (non-commutative) manifold $M$, then the path algebra $C
\tilde{Q}$ determines the cotangent bundle of $M$. Recall that for a
commutative manifold $M$, the cotangent bundle is the vectorbundle
having at the point $p \in M$ as fiber the linear dual $(T_p M)^*$ of
the tangent space. So, why do we claim that $C \tilde{Q}$
corresponds to the cotangent bundle of $C Q$? Fix a dimension vector
$\alpha = (m,n)$ then the representation space
$\mathbf{rep}_{\alpha}~Q = M_{n \times m}(C) \oplus M_n(C)$ is just
an affine space so in its point the tangent space is the representation
space itself. To define its linear dual use the non-degeneracy of the
_trace pairings_ $M_{n \times m}(C) \times M_{m \times n}(C)
\rightarrow C~:~(A,B) \mapsto tr(AB)$ $M_n(C) \times M_n(C)
\rightarrow C~:~(C,D) \mapsto tr(CD)$ and therefore the linear dual
$\mathbf{rep}_{\alpha}~Q^* = M_{m \times n}(C) \oplus M_n(C)$ which is
the representation space $\mathbf{rep}_{\alpha}~Q^s$ of the quiver
$Q^s~:~\xymatrix{\vtx{} & & \vtx{} \ar[ll] \ar@(ur,dr)} $
and therefore we have that the cotangent bundle to the representation
space $\mathbf{rep}_{\alpha}~Q$ $T^* \mathbf{rep}_{\alpha}~Q =
\mathbf{rep}_{\alpha}~\tilde{Q}$ Important for us will be that any
cotangent bundle has a natural _symplectic structure_. For a good
introduction to this see the [course notes][2] “Symplectic geometry and
quivers” by [Geert Van de Weyer][3]. As a consequence $C \tilde{Q}$
can be viewed as a non-commutative symplectic manifold with the
symplectic structure determined by the non-commutative 2-form
$\omega = da^* da + dx^* dx$ but before we can define all this we
will have to recall some facts on non-commutative differential forms.
Maybe [next time][4]. For the impatient : have a look at the paper by
Victor Ginzburg [Non-commutative Symplectic Geometry, Quiver varieties,
and Operads][5] or my paper with Raf Bocklandt [Necklace Lie algebras
and noncommutative symplectic geometry][6]. Now that we have a
cotangent bundle of $C Q$ is there also a _tangent bundle_ and does it
again correspond to a new quiver? Well yes, here it is
$\xymatrix{\vtx{} \ar@/^/[rr]^{a+da} \ar@/_/[rr]_{a-da} & & \vtx{}
\ar@(u,ur)^{x+dx} \ar@(d,dr)_{x-dx}} $ and the labeling of the
arrows may help you to work through some sections of the Cuntz-Quillen
paper…

[1]: https://lievenlb.local/index.php?p=39
[2]: http://www.win.ua.ac.be/~gvdwey/lectures/symplectic_moment.pdf
[3]: http://www.win.ua.ac.be/~gvdwey/
[4]: https://lievenlb.local/index.php?p=41
[5]: http://www.arxiv.org/abs/math.QA/0005165
[6]: http://www.arxiv.org/abs/math.AG/0010030

Leave a Comment