Skip to content →

Tag: moonshine

the future of this blog

Some weeks ago Peter Woit of Not Even Wrong and Bee of Backreaction had a video-chat on all sorts of things (see the links above to see the whole clip) including the nine minute passage below on ‘the future of (science) blogs’.

click here to see the video

The crucial point being that blogging takes time and that one often feels that the time invested might have been better spend doing other things. Bee claims it doesn’t take her that long to write a post, but given their quality, I would be surprised if it took her less than one to two hours on average.

Speaking for myself, I’ve uploaded two (admittedly short) notes to the arXiv recently. The shorter one took me less time than an average blogpost, the longer one took me about the time I need for one of the better posts. So, is it really justified to invest that amount of time in something as virtual as a blog?

Probably it all depends on the type of blog you’re running and what goal (if any) you want to achieve with it.

I can see the point in setting up a blog connected to a book you once wrote or intend to write (such as Not Even Wrong or Terry Tao).

I can also understand that people start a blog to promote their research-topic or to have a social function for people interested in the same topic (such as Noncommutative Geometry or the n-category cafe).

I can even imagine the energy boost resulting from setting up a group-blog with fellow researchers working at the same place (such as Secret Blogging Seminar or the Everything Seminar and some others).

So, there are plenty of good reasons to start and keep investing in a serious mathematical blog (as opposed to mere link-blogs (I won’t mention examples) or standard-textbook-excerpts-blogs (again, I’ll refrain from giving examples)).

What is needed is either a topical focus or a clear medium term objective. Unfortunately, this blog has neither…

At present, I feel like the journalist, spending too much time getting into a subject merely to write a short piece on it for today’s paper, which will be largely forgotten by tomorrow, but still hoping that his better writings will result into something having a longer half-life…

That is, I need to reconsider the future of this blog and will do so over a short vacation. As always, suggestions you might have are welcome. Perhaps I should take the bait offered by John McKay in his comment yesterday and do a series on the illusory 24-dimensional monster-manifold.

At the very least it would take this blog back to the only time when it was somewhat focussed on a single topic and was briefly called MoonshineMath. But then, even this is not without risks…



Leave a Comment

Arnold’s trinities version 2.0

Arnold has written a follow-up to the paper mentioned last time called “Polymathematics : is mathematics a single science or a set of arts?” (or here for a (huge) PDF-conversion).

On page 8 of that paper is a nice summary of his 25 trinities :



I learned of this newer paper from a comment by Frederic Chapoton who maintains a nice webpage dedicated to trinities.

In his list there is one trinity on sporadic groups :

where $F_{24} $ is the Fischer simple group of order $2^{21}.3^{16}.5^2.7^3.11.13.17.23.29 = 1255205709190661721292800 $, which is the third largest sporadic group (the two larger ones being the Baby Monster and the Monster itself).

I don’t know what the rationale is behind this trinity. But I’d like to recall the (Baby)Monster history as a warning against the trinity-reflex. Sometimes, there is just no way to extend a would be trinity.

The story comes from Mark Ronan’s book Symmetry and the Monster on page 178.

Let’s remind ourselves how we got here. A few years earlier, Fischer has created his ‘transposition’ groups Fi22, Fi23, and Fi24. He had called them M(22), M(23), and M(24), because they were related to Mathieu’s groups M22,M23, and M24, and since he used Fi22 to create his new group of mirror symmetries, he tentatively called it $M^{22} $.
It seemed to appear as a cross-section in something even bigger, and as this larger group was clearly associated with Fi24, he labeled it $M^{24} $. Was there something in between that could be called $M^{23} $?
Fischer visited Cambridge to talk on his new work, and Conway named these three potential groups the Baby Monster, the Middle Monster, and the Super Monster. When it became clear that the Middle Monster didn’t exist, Conway settled on the names Baby Monster and Monster, and this became the standard terminology.

Marcus du Sautoy’s account in Finding Moonshine is slightly different. He tells on page 322 that the Super Monster didn’t exist. Anyone knowing the factual story?

Some mathematical trickery later revealed that the Super Monster was going to be impossible to build: there were certain features that contradicted each other. It was just a mirage, which vanished under closer scrutiny. But the other two were still looking robust. The Middle Monster was rechristened simply the Monster.

And, the inclusion diagram of the sporadic simples tells yet another story.



Anyhow, this inclusion diagram is helpful in seeing the three generations of the Happy Family (as well as the Pariahs) of the sporadic groups, terminology invented by Robert Griess in his 100+p Inventiones paper on the construction of the Monster (which he liked to call, for obvious reasons, the Friendly Giant denoted by FG).
The happy family appears in Table 1.1. of the introduction.




It was this picture that made me propose the trinity on the left below in the previous post. I now like to add another trinity on the right, and, the connection between the two is clear.

Here $Golay $ denotes the extended binary Golay code of which the Mathieu group $M_{24} $ is the automorphism group. $Leech $ is of course the 24-dimensional Leech lattice of which the automorphism group is a double cover of the Conway group $Co_1 $. $Griess $ is the Griess algebra which is a nonassociative 196884-dimensional algebra of which the automorphism group is the Monster.

I am aware of a construction of the Leech lattice involving the quaternions (the icosian construction of chapter 8, section 2.2 of SPLAG). Does anyone know of a construction of the Griess algebra involving octonions???

Leave a Comment

Monstrous frustrations

Thanks for clicking through… I guess.

If nothing else, it shows that just as much as the stock market is fueled by greed, mathematical reasearch is driven by frustration (or the pleasure gained from knowing others to be frustrated).

I did spend the better part of the day doing a lengthy, if not laborious, calculation, I’ve been postponing for several years now. Partly, because I didn’t know how to start performing it (though the basic strategy was clear), partly, because I knew beforehand the final answer would probably offer me no further insight.

Still, it gives the final answer to a problem that may be of interest to anyone vaguely interested in Moonshine :

What does the Monster see of the modular group?

I know at least two of you, occasionally reading this blog, understand what I was trying to do and may now wonder how to repeat the straightforward calculation. Well the simple answer is : Google for the number 97239461142009186000 and, no doubt, you will be able to do the computation overnight.

One word of advice : don’t! Get some sleep instead, or make love to your partner, because all you’ll get is a quiver on nine vertices (which is pretty good for the Monster) but having an horrible amount of loops and arrows…

If someone wants the details on all of this, just ask. But, if you really want to get me exited : find a moonshine reason for one of the following two numbers :

$791616381395932409265430144165764500492= 2^2 * 11 * 293 * 61403690769153925633371869699485301 $

(the dimension of the monster-singularity upto smooth equivalence), or,

$1575918800531316887592467826675348205163= 523 * 1655089391 * 15982020053213 * 113914503502907 $

(the dimension of the moduli space).

Leave a Comment