Skip to content →

Tag: groups

the modular group and superpotentials (1)

Here I will go over the last post at a more leisurely pace, focussing on a couple of far more trivial examples. Here’s the goal : we want to assign a quiver-superpotential to any subgroup of finite index of the modular group. So fix such a subgroup $\Gamma’ $ of the modular group $\Gamma=PSL_2(\mathbb{Z}) $ and consider the associated permutation representation of $\Gamma $ on the left-cosets $\Gamma/\Gamma’ $. As $\Gamma \simeq C_2 \ast C_3 $ this representation is determined by the action of the order 2 and order 3 generators of the modular group. There are a number of combinatorial gadgets to control the subgroup $\Gamma’ $ and the associated permutation representation : (generalized) Farey symbols and dessins d’enfants.

Recall that the modular group acts on the upper-halfplane (the ‘hyperbolic plane’) by Moebius transformations, so to any subgroup $\Gamma’ $ we can associate a fundamental domain for its restricted action. The dessins and the Farey symbols give us a particular choice of these fundamental domains. Let us consider the two most trivial subgroups of all : the modular group itself (so $\Gamma/\Gamma $ is just one element and therefore the associated permutation representation is just the trivial representation) and the unique index two subgroup $\Gamma_2 $ (so there are two cosets $\Gamma/\Gamma_2 $ and the order 2 generator interchanges these two while the order 3 generator acts trivially on them). The fundamental domains of $\Gamma $ (left) and $\Gamma_2 $ (right) are depicted below

In both cases the fundamental domain is bounded by the thick black (hyperbolic) edges. The left-domain consists of two hyperbolic triangles (the upper domain has $\infty $ as the third vertex) and the right-domain has 4 triangles. In general, if the subgroup $\Gamma’ $ has index n, then its fundamental domain will consist of $2n $ hyperbolic triangles. Note that these triangles are part of the Dedekind tessellation so really depict the action of $PGL_2(\mathbb{Z} $ and any $\Gamma $-hyperbolic triangle consists of one black and one white triangle in Dedekind’s coloring. We will indicate the color of a triangle by a black circle if the corresponding triangle is black. Of course, the bounding edges of the fundamental domain need to be identified and the Farey symbol is a notation device to clarify this. The Farey symbols of the above domains are
[tex]\xymatrix{\infty \ar@{-}[r]_{\circ} & 0 \ar@{-}[r]_{\bullet} & \infty}[/tex] and [tex]\xymatrix{\infty \ar@{-}[r]_{\bullet} & 0 \ar@{-}[r]_{\bullet} & \infty}[/tex] respectively. In both cases this indicates that the two bounding edges on the left are to be identified as are the two bounding edges on the right (so, in particular, after identification $\infty $ coincides with $0 $). Hence, after identification, the $\Gamma $ domain consists of two triangles on the vertices ${ 0,i,\rho } $ (where $\rho=e^{2 \pi i}{6} $) (the blue dots) sharing all three edges, the $\Gamma_2 $ domain consists of 4 triangles on the 4 vertices ${ 0,i,\rho,\rho^2 } $ (the blue dots). In general we have three types of vertices : cusps (such as 0 or $\infty $), even vertices (such as $i $ where there are 4 hyperbolic edges in the Dedekind tessellation) and odd vertices (such as $\rho $ and $\rho^2 $ where there are 6 hyperbolic edges in the tessellation).

Another combinatorial gadget assigned to the fundamental domain is the cuboid tree diagram or dessin. It consists of all odd and even vertices on the boundary of the domain, together with all odd and even vertices in the interior. These vertices are then connected with the hyperbolic edges connecting them. If we color the even vertices red and the odds blue we have the indicated dessins for our two examples (the green pictures). An half-edge is an edge connecting a red and a blue vertex in the dessin and we number all half-edges. So, the $\Gamma $-dessin has 1 half-edge whereas the $\Gamma_2 $-dessin has two (in general, the number of these half-edges is equal to the index of the subgroup). Observe also that every triangle has exactly one half-edge as one of its three edges. The dessin gives all information to calculate the permutation representation on the coset-set $\Gamma/\Gamma’ $ : the action of the order 2 generator of $\Gamma $ is given by taking for each internal red vertex the two-cycle $~(a,b) $ where a and b are the numbers of the two half-edges connected to the red vertex and the action of the order 3 generator is given by taking for every internal blue vertex the three cycle $~(c,d,e) $ where c, d and e are the numbers of the three half-edges connected to the blue vertex in counter-clockwise ordering. Our two examples above are a bit too simplistic to view this in action. There are no internal blue vertices, so the action of the order 3 generator is trivial in both cases. For $\Gamma $ there is also no red internal vertex, whence this is indeed the trivial representation whereas for $\Gamma_2 $ there is one internal red vertex, so the action of the order 2 generator is given by $~(1,2) $, which is indeed the representation representation on $\Gamma/\Gamma_2 $. In general, if the index of the subgroup $\Gamma’ $ is n, then we call the subgroup of the symmetric group on n letters $S_n $ generated by the action-elements of the order 2 and order 3 generator the monodromy group of the permutation representation (or of the subgroup). In the trivial cases here, the monodromy groups are the trivial group (for $\Gamma $) and $C_2 $ (for $\Gamma_2 $).

As a safety-check let us work out all these concepts in the next simplest examples, those of some subgroups of index 3. Consider the Farey symbols

[tex]\xymatrix{\infty \ar@{-}[r]_{\circ} & 0 \ar@{-}[r]_{\circ} & 1 \ar@{-}[r]_{\circ} & \infty}[/tex] and
[tex]\xymatrix{\infty \ar@{-}[r]_{\circ} & 0 \ar@{-}[r]_{1} & 1 \ar@{-}[r]_{1} & \infty}[/tex]

In these cases the fundamental domain consists of 6 triangles with the indicated vertices (the blue dots). The distinction between the two is that in the first case, one identifies the two edges of the left, resp. bottom, resp. right boundary (so, in particular, 0,1 and $\infty $ are identified) whereas in the second one identifies the two edges of the left boundary and identifies the edges of the bottom with those of the right boundary (here, 0 is identified only with $\infty $ but also $1+i $ is indetified with $\frac{1}{2}+\frac{1}{2}i $).

In both cases the dessin seems to be the same (and given by the picture on the right). However, in the first case all three red vertices are distinct hence there are no internal red vertices in this case whereas in the second case we should identify the bottom and right-hand red vertex which then becomes an internal red vertex of the dessin!

Hence, if we order the three green half-edges 1,2,3 starting with the bottom one and counting counter-clockwise we see that in both cases the action of the order 3-generator of $\Gamma $ is given by the 3-cycle $~(1,2,3) $. The action of the order 2-generator is trivial in the first case, while given by the 2-cycle $~(1,2) $ in the second case. Therefore, the monodromy group is the cylic group $C_3 $ in the first case and is the symmetric group $S_3 $ in the second case.

Next time we will associate a quiver to these vertices and triangles as well as a cubic superpotential which will then allow us to define a noncommutative algebra associated to any subgroup of the modular group. The monodromy group of the situation will then reappear as a group of algebra-automorphisms of this noncommutative algebra!

Leave a Comment

profinite groups survival guide

Even if you don’t know the formal definition of a profinte group, you know at least one example which explains the concept : the Galois group of the algebraic numbers $Gal = Gal(\overline{\mathbb{Q}}/\mathbb{Q}) $ aka the absolute Galois group. By definition it is the group of all $\mathbb{Q} $-isomorphisms of the algebraic closure $\overline{\mathbb{Q}} $. Clearly, it is an object of fundamental importance for mathematics but in spite of this very little is known about it. For example, it obviously is an infinite group but, apart from the complex conjugation, try to give one (1!) other nontrivial element… On the other hand we know lots of finite quotients of $Gal $. For, take any finite Galois extension $\mathbb{Q} \subset K $, then its Galois group $G_K = Gal(K/\mathbb{Q}) $ is a finite group and there is a natural onto morphism $\pi_K~:~Gal \rightarrow G_K $ obtained by dividing out all $K $-automorphisms of $\overline{\mathbb{Q}} $. Moreover, all these projections fit together nicely. If we take a larger Galois extension $K \subset L $ then classical Galois theory tells us that there is a projection $\pi_{LK}~:~G_L \rightarrow G_K $ by dividing out the normal subgroup of all $K $-automorphisms of $L $ and these finite maps are compatible with those from the absolute Galois group, that is, for all such finite Galois extensions, the diagram below is commutative

[tex]\xymatrix{Gal \ar[rr]^{\pi_L} \ar[rd]_{\pi_K} & & G_L \ar[ld]^{\pi_{LK}} \\
& G_K &}[/tex]

By going to larger and larger finite Galois extensions $L $ we get closer and closer to the algebraic closure $\overline{Q} $ and hence a better and better finite approximation $G_L $ of the absolute Galois group $Gal $. Still with me? Congratulations, you just rediscovered the notion of a profinite group! Indeed, the Galois group is the projective limit

$Gal = \underset{\leftarrow}{lim}~G_L $

over all finite Galois extensions $L/\mathbb{Q} $. If the term ‘projective limit’ scares you off, it just means that all the projections $\pi_{KL} $ coming from finite Galois theory are compatible with those coming from the big Galois group as before. That’s it : profinite groups are just projective limits of finite groups.

These groups come equipped with a natural topology : the Krull topology. Again, this notion is best clarified by considering the absolute Galois group. Now that we have $Gal $ we would like to extend the classical Galois correspondence between subgroups and subfields $\mathbb{Q} \subset K \subset \overline{\mathbb{Q}} $ and between normal subgroups and Galois subfields. For each finite Galois extension $K/\mathbb{Q} $ we have a normal subgroup of finite index, the kernel $U_K=Ker(\pi_K) $ of the projection map above. Let us take the set of all $U_K $ as a fundamental system of neighborhoods of the identity element in $Gal $. This defines a topology on $Gal $ and this is the Krull topology. As every open subgroup has finite index it is clear that this turns $Gal $ into a compact topological group. Its purpose is that we can now extend the finite Galois correspondence to Krull’s Galois theorem :

There is a bijective lattice inverting Galois correspondence between the set of all closed subgroups of $Gal $ and the set of all subfields $\mathbb{Q} \subset F \subset \overline{\mathbb{Q}} $. Finite field extensions correspond in this bijection to open subgroups and the usual normal subgroup and factor group correspondences hold!

So far we had a mysterious group such as $Gal $ and reconstructed it from all its finite quotients as a projective limit. Now we can reverse the situation : suppose we have a wellknown group such as the modular group $\Gamma = PSL_2(\mathbb{Z}) $, then we can look at the set of all its normal subgroups $U $ of finite index. For each of those we have a quotient map to a finite group $\pi_U~:~\Gamma \rightarrow G_U $ and clearly if $U \subset V $ we have a quotient map of finite groups $\pi_{UV}~:~G_U \rightarrow G_V $ compatible with the quotient maps from $\Gamma $

[tex]\xymatrix{\Gamma \ar[rr]^{\pi_U} \ar[rd]_{\pi_V} & & G_U \ar[ld]^{\pi_{UV}} \\
& G_V &}[/tex]

For the family of finite groups $G_U $ and groupmorphisms $\pi_{UV} $ we can ask for the ‘best’ group mapping to each of the $G_U $ compatible with the groupmaps $G_{UV} $. By ‘best’ we mean that any other group with this property will have a morphism to the best-one such that all quotient maps are compatible. This ‘best-one’ is called the projective limit

$\hat{\Gamma} = \underset{\leftarrow}{lim}~G_U $

and as a profinite group it has again a Krull topology making it into a compact group. Because the modular group $\Gamma $ had quotient maps to all the $G_U $ we know that there must be a groupmorphism to the best-one
$\phi~:~\Gamma \rightarrow \hat{\Gamma} $ and therefore we call $\hat{\Gamma} $ the profinite compactification (or profinite completion) of the modular group.

A final remark about finite dimensional representations. Every continuous complex representation of a profinite group like the absolute Galois group $Gal \rightarrow GL_n(\mathbb{C}) $ has finite image and this is why they are of little use for people studying the Galois group as it conjecturally reduces the study of these representations to ‘just’ all representations of all finite groups. Instead they consider representations to other topological fields such as p-adic numbers $Gal \rightarrow GL_n(\mathbb{Q}_p) $ and call these Galois representations.

For people interested in Grothendieck’s dessins d’enfants, however, continuous complex representations of the profinite compactification $\hat{\Gamma} $ is exactly their object of study and via the universal map $\phi~:~\Gamma \rightarrow \hat{\Gamma} $ above we have an embedding

$\mathbf{rep}_c~\hat{\Gamma} \rightarrow \mathbf{rep}~\Gamma $

of them in all finite dimensional representations of the modular group (
and we have a similar map restricted to simple representations). I hope this clarifies a bit obscure terms in the previous post. If not, drop a comment.

Leave a Comment

Anabelian vs. Noncommutative Geometry

This is how my attention was drawn to what I have since termed
anabelian algebraic geometry, whose starting point was exactly a study
(limited for the moment to characteristic zero) of the action of absolute
Galois groups (particularly the groups $Gal(\overline{K}/K) $, where K is an extension of finite type of the prime field) on (profinite) geometric fundamental
groups of algebraic varieties (defined over K), and more particularly (breaking with a well-established tradition) fundamental groups which are very far
from abelian groups (and which for this reason I call anabelian). Among
these groups, and very close to the group $\hat{\pi}_{0,3} $ , there is the profinite compactification of the modular group $SL_2(\mathbb{Z}) $, whose quotient by its centre
$\{ \pm 1 \} $ contains the former as congruence subgroup mod 2, and can also be
interpreted as an oriented cartographic group, namely the one classifying triangulated oriented maps (i.e. those whose faces are all triangles or
monogons).

The above text is taken from Alexander Grothendieck‘s visionary text Sketch of a Programme. He was interested in the permutation representations of the modular group $\Gamma = PSL_2(\mathbb{Z}) $ as they correspond via Belyi-maps and his own notion of dessins d’enfants to smooth projective curves defined over $\overline{\mathbb{Q}} $. One can now study the action of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) $ on these curves and their associated dessins. Because every permutation representation of $\Gamma $ factors over a finite quotient this gives an action of the absolute Galois group as automorphisms on the profinite compactification

$\hat{\Gamma} = \underset{\leftarrow}{lim}~\Gamma/N $

where the limit is taken over all finite index normal subgroups $N \triangleleft PSL_2(\mathbb{Z}) $. In this way one realizes the absolute Galois group as a subgroup of the outer automorphism group of the profinite group $\hat{\Gamma} $. As a profinite group is a compact topological group one should study its continuous finite dimensional representations which are precisely those factoring through a finite quotient. In the case of $\hat{\Gamma} $ the simple continuous representations $\mathbf{simp}_c~\hat{\Gamma} $ are precisely the components of the permutation representations of the modular group. So in a sense, anabelian geometry is the study of these continuous simples together wirth the action of the absolute Galois group on it.

In noncommutative geometry we are interested in a related representation theoretic problem. We would love to know the simple finite dimensional representations $\mathbf{simp}~\Gamma $ of the modular group as this would give us all simples of the three string braid group $B_3 $. So a natural question presents itself : how are these two ‘geometrical’ objects $\mathbf{simp}_c~\hat{\Gamma} $ (anabelian) and $\mathbf{simp}~\Gamma $ (noncommutative) related and can we use one to get information about the other?

This is all rather vague so far, so let us work out a trivial case to get some intuition. Consider the profinite completion of the infinite Abelian group

$\hat{\mathbb{Z}} = \underset{\leftarrow}{lim}~\mathbb{Z}/n\mathbb{Z} = \prod_p \hat{\mathbb{Z}}_p $

As all simple representations of an Abelian group are one-dimensional and because all continuous ones factor through a finite quotient $\mathbb{Z}/n\mathbb{Z} $ we see that in this case

$\mathbf{simp}_c~\hat{\mathbb{Z}} = \mu_{\infty} $

is the set of all roots of unity. On the other hand, the simple representations of $\mathbb{Z} $ are also one-dimensional and are determined by the image of the generator so

$\mathbf{simp}~\mathbb{Z} = \mathbb{C} – { 0 } = \mathbb{C}^* $

Clearly we have an embedding $\mu_{\infty} \subset \mathbb{C}^* $ and the roots of unity are even dense in the Zariski topology. This might look a bit strange at first because clearly all roots of unity lie on the unit circle which ‘should be’ their closure in the complex plane, but that’s because we have a real-analytic intuition. Remember that the Zariski topology of $\mathbb{C}^*$ is just the cofinite topology, so any closed set containing the infinitely many roots of unity should be the whole space!

Let me give a pedantic alternative proof of this (but one which makes it almost trivial that a similar result should be true for most profinite completions…). If $c $ is the generator of $\mathbb{Z} $ then the different conjugacy classes are precisely the singletons $c^n $. Now suppose that there is a polynomial $a_0+a_1x+\ldots+a_mx^m $ vanishing on all the continuous simples of $\hat{\mathbb{Z}} $ then this means that the dimensions of the character-spaces of all finite quotients $\mathbb{Z}/n\mathbb{Z} $ should be bounded by $m $ (for consider $x $ as the character of $c $), which is clearly absurd.

Hence, whenever we have a finitely generated group $G $ for which there is no bound on the number of irreducibles for finite quotients, then morally the continuous simple space for the profinite completion

$\mathbf{simp}_c~\hat{G} \subset \mathbf{simp}~G $

should be dense in the Zariski topology on the noncommutative space of simple finite dimensional representations of $G $. In particular, this should be the case for the modular group $PSL_2(\mathbb{Z}) $.

There is just one tiny problem : unlike the case of $\mathbb{Z} $ for which this space is an ordinary (ie. commutative) affine variety $\mathbb{C}^* $, what do we mean by the “Zariski topology” on the noncommutative space $\mathbf{simp}~PSL_2(\mathbb{Z}) $ ? Next time we will clarify what this might be and show that indeed in this case the subset

$\mathbf{simp}_c~\hat{\Gamma} \subset \mathbf{simp}~\Gamma $

will be a Zariski closed subset!

Leave a Comment