Skip to content →

Tag: geometry

the Bost-Connes coset space

By now, everyone remotely interested in Connes’ approach to the Riemann hypothesis, knows the _one line mantra_

one can use noncommutative geometry to extend Weil’s proof of the Riemann-hypothesis in the function field case to that of number fields

But, can one go beyond this sound-bite in a series of blog posts? A few days ago, I was rather optimistic, but now, after reading-up on the Connes-Consani-Marcolli project, I feel overwhelmed by the sheer volume of their work (and by my own ignorance of key tools in the approach). The most recent account takes up half of the 700+ pages of the book Noncommutative Geometry, Quantum Fields and Motives by Alain Connes and Matilde Marcolli…

So let us set a more modest goal and try to understand one of the first papers Alain Connes wrote about the RH : Noncommutative geometry and the Riemann zeta function. It is only 24 pages long and relatively readable. But even then, the reader needs to know about class field theory, the classification of AF-algebras, Hecke algebras, etc. etc. Most of these theories take a book to explain. For example, the first result he mentions is the main result of local class field theory which appears only towards the end of the 200+ pages of Jean-Pierre Serre’s Local Fields, itself a somewhat harder read than the average blogpost…

Anyway, we will see how far we can get. Here’s the plan : I’ll take the heart-bit of their approach : the Bost-Connes system, and will try to understand it from an algebraist’s viewpoint. Today we will introduce the groups involved and describe their cosets.

For any commutative ring $R $ let us consider the group of triangular $2 \times 2 $ matrices of the form

$P_R = { \begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix}~|~b \in R, a \in R^* } $

(that is, $a $ in an invertible element in the ring $R $). This is really an affine group scheme defined over the integers, that is, the coordinate ring

$\mathbb{Z}[P] = \mathbb{Z}[x,x^{-1},y] $ becomes a Hopf algebra with comultiplication encoding the group-multiplication. Because

$\begin{bmatrix} 1 & b_1 \\ 0 & a_1 \end{bmatrix} \begin{bmatrix} 1 & b_2 \\ 0 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \times b_2 + b_1 \times a_2 \\ 0 & a_1 \times a_2 \end{bmatrix} $

we have $\Delta(x) = x \otimes x $ and $\Delta(y) = 1 \otimes y + y \otimes x $, or $x $ is a group-like element whereas $y $ is a skew-primitive. If $R \subset \mathbb{R} $ is a subring of the real numbers, we denote by $P_R^+ $ the subgroup of $P_R $ consisting of all matrices with $a > 0 $. For example,

$\Gamma_0 = P_{\mathbb{Z}}^+ = { \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}~|~n \in \mathbb{Z} } $

which is a subgroup of $\Gamma = P_{\mathbb{Q}}^+ $ and our first job is to describe the cosets.

The left cosets $\Gamma / \Gamma_0 $ are the subsets $\gamma \Gamma_0 $ with $\gamma \in \Gamma $. But,

$\begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix} \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b+n \\ 0 & a \end{bmatrix} $

so if we represent the matrix $\gamma = \begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix} $ by the point $~(a,b) $ in the right halfplane, then for a given positive rational number $a $ the different cosets are represented by all $b \in [0,1) \cap \mathbb{Q} = \mathbb{Q}/\mathbb{Z} $. Hence, the left cosets are all the rational points in the region between the red and green horizontal lines. For fixed $a $ the cosets correspond to the rational points in the green interval (such as over $\frac{2}{3} $ in the picture on the left.

Similarly, the right cosets $\Gamma_0 \backslash \Gamma $ are the subsets $\Gamma_0 \gamma $ and as

$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix} = \begin{bmatrix} 1 & b+na \\ 0 & a \end{bmatrix} $

we see similarly that the different cosets are precisely the rational points in the region between the lower red horizontal and the blue diagonal line. So, for fixed $a $ they correspond to rational points in the blue interval (such as over $\frac{3}{2} $) $[0,a) \cap \mathbb{Q} $. But now, let us look at the double coset space $\Gamma_0 \backslash \Gamma / \Gamma_0 $. That is, we want to study the orbits of the action of $\Gamma_0 $, acting on the right, on the left-cosets $\Gamma / \Gamma_0 $, or equivalently, of the action of $\Gamma_0 $ acting on the left on the right-cosets $\Gamma_0 \backslash \Gamma $. The crucial observation to make is that these actions have finite orbits, or equivalently, that $\Gamma_0 $ is an almost normal subgroup of $\Gamma $ meaning that $\Gamma_0 \cap \gamma \Gamma_0 \gamma^{-1} $ has finite index in $\Gamma_0 $ for all $\gamma \in \Gamma $. This follows from

$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & a \end{bmatrix} \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b+m+an \\ 0 & a \end{bmatrix} $

and if $n $ varies then $an $ takes only finitely many values modulo $\mathbb{Z} $ and their number depends only on the denominator of $a $. In the picture above, the blue dots lying on the line over $\frac{2}{3} $ represent the double coset

$\Gamma_0 \begin{bmatrix} 1 & \frac{2}{3} \\ 0 & \frac{2}{3} \end{bmatrix} $ and we see that these dots split the left-cosets with fixed value $a=\frac{2}{3} $ (that is, the green line-segment) into three chunks (3 being the denominator of a) and split the right-cosets (the line-segment under the blue diagonal) into two subsegments (2 being the numerator of a). Similarly, the blue dots on the line over $\frac{3}{2} $ divide the left-cosets in two parts and the right cosets into three parts.

This shows that the $\Gamma_0 $-orbits of the right action on the left cosets $\Gamma/\Gamma_0 $ for each matrix $\gamma \in \Gamma $ with $a=\frac{2}{3} $ consist of exactly three points, and we denote this by writing $L(\gamma) = 3 $. Similarly, all $\Gamma_0 $-orbits of the left action on the right cosets $\Gamma_0 \backslash \Gamma $ with this value of a consist of two points, and we write this as $R(\gamma) = 2 $.

For example, on the above picture, the black dots on the line over $\frac{2}{3} $ give the matrices in the double coset of the matrix

$\gamma = \begin{bmatrix} 1 & \frac{1}{7} \\ 0 & \frac{2}{3} \end{bmatrix} $

and the gray dots on the line over $\frac{3}{2} $ determine the elements of the double coset of

$\gamma^{-1} = \begin{bmatrix} 1 & -\frac{3}{14} \\ 0 & \frac{3}{2} \end{bmatrix} $

and one notices (in general) that $L(\gamma) = R(\gamma^{-1}) $. But then, the double cosets with $a=\frac{2}{3} $ are represented by the rational b’s in the interval $[0,\frac{1}{3}) $ and those with $a=\frac{3}{2} $ by the rational b’s in the interval $\frac{1}{2} $. In general, the double cosets of matrices with fixed $a = \frac{r}{s} $ with $~(r,s)=1 $ are the rational points in the line-segment over $a $ with $b \in [0,\frac{1}{s}) $.

That is, the Bost-Connes double coset space $\Gamma_0 \backslash \Gamma / \Gamma_0 $ are the rational points in a horrible fractal comb. Below we have drawn only the part of the dyadic values, that is when $a = \frac{r}{2^t} $ in the unit inverval

and of course we have to super-impose on it similar pictures for rationals with other powers as their denominators. Fortunately, NCG excels in describing such fractal beasts…

UPDATE : here is a slightly beter picture of the coset space, drawing the part over all rational numbers contained in the 15-th Farey sequence. The blue segments of length one are at 1,2,3,…

Leave a Comment

Majority offers security…

What better way to start a series on Web 2.0 & Mathematics than to reflect on the potential dangers of majority-approved sites, such as Google, Wikipedia and META-sites. Bee has written a great essay The Spirits That We Called

Now you can tell me everyone of us should be rational, we should always check sources, doubt unverified reports even if repeated several times. We shouldn’t believe what we read without questioning it. We should seek accuracy and not easy entertainment. We should, we should, we should. But face it, many people don’t. Because they just don’t have the time, or are not interested enough, and the most commonly used criteria in this case is to follow the masses. Read what others read (the posts with the most comments?) go where many people link to, talk what others talk about, pay attention to what many people consider relevant. Majority offers security, Wikipedia is trustworthy, Google has proved useful.

To wet your appetite to take a break, and start reading the full essay (11 printed pages available from this pdf link), her opening paragraph, in which she outlines possible consequences of tempering with social bookmark sites.

MARCH 13th 2008: Until Wednesday, the Presidential candidate [insert name here] scored high in the polls. Then a Google search for his name showed up as first hit a report on an alleged child abuse committed by the candidate, published by Mary S. (name changed) on her personal website. The story was backed up by the following highly ranked hits that indicated two similar events during his youth, though reliable sources were missing. Within less than one hour, the reports were echoed on thousands of weblogs, appeared on digg and reddit, the original websites received 200,000 hits within the first 6 hours, until the server crashed down. Immediate press releases by the candidate’s PR groups did not appear on the Google listing, and could only be accessed by secondary links. It took until the next day that printed newspapers could attempt to clarify the situation.

Another, equally interesting essay, to which Bee points is Digital Maoism by Jaron Lanier,

The Wikipedia is far from being the only online fetish site for foolish collectivism. There’s a frantic race taking place online to become the most “Meta” site, to be the highest level aggregator, subsuming the identity of all other sites.
The race began innocently enough with the notion of creating directories of online destinations, such as the early incarnations of Yahoo. Then came AltaVista, where one could search using an inverted database of the content of the whole Web. Then came Google, which added page rank algorithms. Then came the blogs, which varied greatly in terms of quality and importance. This lead to Meta-blogs such as Boing Boing, run by identified humans, which served to aggregate blogs. In all of these formulations, real people were still in charge. An individual or individuals were presenting a personality and taking responsibility.

In the last year or two the trend has been to remove the scent of people, so as to come as close as possible to simulating the appearance of content emerging out of the Web as if it were speaking to us as a supernatural oracle. This is where the use of the Internet crosses the line into delusion.

In March, Kelly reviewed a variety of “Consensus Web filters” such as “Digg” and “Reddit” that assemble material every day from all the myriad of other aggregating sites. Such sites intend to be more Meta than the sites they aggregate. There is no person taking responsibility for what appears on them, only an algorithm. The hope seems to be that the most Meta site will become the mother of all bottlenecks and receive infinite funding.

Now, please print out these two essays, turn off your computer for an hour, and read them! Perhaps they change your opinion as to whether or not getting involved into some of these bookmark sites. Being aware of their potential danger is one (important) thing, neglecting them altogether has drawbacks too.

You might want to repeat the experiment I performed last night : type in your favorite technical term (mine was ‘noncommutative’, when this failed to return a hit, I tried ‘geometry’) into bookmark sites such as StumbleUpon, Digg, MyBlogLog, Reddit, blinklist, Magnolia and a dozen other similar ones.

You will discover that there is hardly any mathematics of value to be found there. As more people are using such sites in search of information, an inevitable consequence is that mathematics will become even more marginal, unless we take some action.

In my experiment, there was one noteworthy exception (( delicious was another ok-site )) : CiteUlike which has 427 articles tagged noncommutative, perhaps a result of the action I started 2 years ago. So, there is still hope!

Leave a Comment

now what?

You may not have noticed, but the really hard work was done behind the scenes, resurrecting about 300 old posts (some of them hidden by giving them ‘private’-status). Ive only deleted about 10 posts with little or no content and am sorry I’ve self-destructed about 20-30 hectic posts over the years by pressing the ‘delete post’ button. I would have liked to reread them after all the angry mails Ive received. But, as Ive defended myself at the time, and as I continue to do today, a blog only records feelings at a specific moment. Often, the issue is closed for me once Ive put my frustrations in a post, and then Ill forget all about it. Sadly, the gossip-circuit in noncommutative circles is a lot, a lot, slower than my mood swings, so by the time people complain it’s no longer an issue for me and I tend to delete the post altogether. A blog really is a sort of diary. For example, it only struck me now, rereading the posts of the end of 2006, beginning of 2007, how depressed I must have been at the time. Fortunately, life has improved, somewhat… Still, after all these reminiscences, the real issue is : what comes next?

Some of you may have noticed that I’ve closed the open series on tori-cryptography and on superpotentials in a rather abrupt manner. It took me that long to realize that none of you is waiting for this kind of posts. You’re thinking : if he really wants to show off, let him do his damned thing on the arXiv, a couple of days a year, at worst, and then we can then safely ignore it, like we do with most papers. Isnt’t that true? Of course it is…

So, what are you waiting for? Here’s what I believe to be a sensible thing to try out. Over the last 4 years I must have posted well over 50 times what I believe noncommutative geometry is all about, so if you still don’t know, please consult the archive, I fear I can only repeat myself. Probably, it is more worthwhile to reach out to other approaches to noncommutative geometry, trying to figure out what, if anything, they are after, without becoming a new-age convert (‘connes-vert’, I’d say). The top-left picture may give you an inkling of what I’m after… Besides, Im supposed to run a ‘capita selecta’ course for third year Bachelors and Ive chosen to read with them the book The music of the primes and to expand on the mathematics hinted only at in the book. So, I’ll totally immerse myself in Connes’ project to solve the Riemann-hypothesis in the upcoming months.

Again, rereading old posts, it strikes me how much effort I’ve put into trying to check whether technology can genuinely help mathematicians to do what they want to do more efficiently (all post categorized as iMath). I plan some series of posts re-exploring these ideas. The first series will be about the overhyped Web-2 thing of social-bookmarking. So, in the next weeks I’ll go undercover and check out which socialsites are best for mathematicians (in particular, noncommutative geometers) to embrace…

Apart from these, admittedly vague, plans I am as always open for suggestions you might have. So, please drop a comment..

Leave a Comment