Skip to content →

Tag: geometry

The F_un folklore

All esoteric subjects have their own secret (sacred) texts. If you opened the Da Vinci Code (or even better, the original The Holy blood and the Holy grail) you will known about a mysterious collection of documents, known as the “Dossiers secrets“, deposited in the Bibliothèque nationale de France on 27 April 1967, which is rumoured to contain the mysteries of the Priory of Sion, a secret society founded in the middle ages and still active today…

The followers of F-un, for $\mathbb{F}_1 $ the field of one element, have their own collection of semi-secret texts, surrounded by whispers, of which they try to decode every single line in search of enlightenment. Fortunately, you do not have to search the shelves of the Bibliotheque National in Paris, but the depths of the internet to find them as huge, bandwidth-unfriendly, scanned documents.

The first are the lecture notes “Lectures on zeta functions and motives” by Yuri I. Manin of a course given in 1991.

One can download a scanned version of the paper from the homepage of Katia Consani as a huge 23.1 Mb file. Of F-un relevance is the first section “Absolute Motives?” in which

“…we describe a highly speculative picture of analogies between arithmetics over $\mathbb{F}_q $ and over $\mathbb{Z} $, cast in the language reminiscent of Grothendieck’s motives. We postulate the existence of a category with tensor product $\times $ whose objects correspond not only to the divisors of the Hasse-Weil zeta functions of schemes over $\mathbb{Z} $, but also to Kurokawa’s tensor divisors. This neatly leads to teh introduction of an “absolute Tate motive” $\mathbb{T} $, whose zeta function is $\frac{s-1}{2\pi} $, and whose zeroth power is “the absolute point” which is teh base for Kurokawa’s direct products. We add some speculations about the role of $\mathbb{T} $ in the “algebraic geometry over a one-element field”, and in clarifying the structure of the gamma factors at infinity.” (loc.cit. p 1-2)

I’d welcome links to material explaining this section to people knowing no motives.

The second one is the unpublished paper “Cohomology determinants and reciprocity laws : number field case” by Mikhail Kapranov and A. Smirnov.

This paper features in blog-posts at the Arcadian Functor, in John Baez’ Weekly Finds and in yesterday’s post at Noncommutative Geometry.

You can download every single page (of 15) as a separate file from here. But, in order to help spreading the Fun-gospel, I’ve made these scans into a single PDF-file which you can download as a 2.6 Mb PDF. In the introduction they say :

“First of all, it is an old idea to interpret combinatorics of finite sets as the $q \rightarrow 1 $ limit of linear algebra over the finite field $\mathbb{F}_q $. This had lead to frequent consideration of the folklore object $\mathbb{F}_1 $, the “field with one element”, whose vector spaces are just sets. One can postulate, of course, that $\mathbf{spec}(\mathbb{F}_1) $ is the absolute point, but the real problem is to develop non-trivial consequences of this point of view.”

They manage to deduce higher reciprocity laws in class field theory within the theory of $\mathbb{F}_1 $ and its field extensions $\mathbb{F}_{1^n} $. But first, let us explain how they define linear algebra over these absolute fields.

Here is a first principle : in doing linear algebra over these fields, there is no additive structure but only scalar multiplication by field elements. So, what are vector spaces over the field with one element? Well, as scalar multiplication with 1 is just the identity map, we have that a vector space is just a set. Linear maps are just set-maps and in particular, a linear isomorphism of a vector space onto itself is a permutation of the set. That is, linear algebra over $\mathbb{F}_1 $ is the same as combinatorics of (finite) sets.

A vector space over $\mathbb{F}_1 $ is just a set; the dimension of such a vector space is the cardinality of the set. The general linear group $GL_n(\mathbb{F}_1) $ is the symmetric group $S_n $, the identification via permutation matrices (having exactly one 1 in every row and column)

Some people prefer to view an $\mathbb{F}_1 $ vector space as a pointed set, the special element being the ‘origin’ $0 $ but as $\mathbb{F}_1 $ doesnt have a zero, there is also no zero-vector. Still, in later applications (such as defining exact sequences and quotient spaces) it is helpful to have an origin. So, let us denote for any set $S $ by $S^{\bullet} = S \cup { 0 } $. Clearly, linear maps between such ‘extended’ spaces must be maps of pointed sets, that is, sending $0 \rightarrow 0 $.

The field with one element $\mathbb{F}_1 $ has a field extension of degree n for any natural number n which we denote by $\mathbb{F}_{1^n} $ and using the above notation we will define this field as :

$\mathbb{F}_{1^n} = \mu_n^{\bullet} $ with $\mu_n $ the group of all n-th roots of unity. Note that if we choose a primitive n-th root $\epsilon_n $, then $\mu_n \simeq C_n $ is the cyclic group of order n.

Now what is a vector space over $\mathbb{F}_{1^n} $? Recall that we only demand units of the field to act by scalar multiplication, so each ‘vector’ $\vec{v} $ determines an n-set of linear dependent vectors $\epsilon_n^i \vec{v} $. In other words, any $\mathbb{F}_{1^n} $-vector space is of the form $V^{\bullet} $ with $V $ a set of which the group $\mu_n $ acts freely. Hence, $V $ has $N=d.n $ elements and there are exactly $d $ orbits for the action of $\mu_n $ by scalar multiplication. We call $d $ the dimension of the vectorspace and a basis consists in choosing one representant for every orbits. That is, $~B = { b_1,\ldots,b_d } $ is a basis if (and only if) $V = { \epsilon_n^j b_i~:~1 \leq i \leq d, 1 \leq j \leq n } $.

So, vectorspaces are free $\mu_n $-sets and hence linear maps $V^{\bullet} \rightarrow W^{\bullet} $ is a $\mu_n $-map $V \rightarrow W $. In particular, a linear isomorphism of $V $, that is an element of $GL_d(\mathbb{F}_{1^n}) $ is a $\mu_n $ bijection sending any basis element $b_i \rightarrow \epsilon_n^{j(i)} b_{\sigma(i)} $ for a permutation $\sigma \in S_d $.

An $\mathbb{F}_{1^n} $-vectorspace $V^{\bullet} $ is a free $\mu_n $-set $V $ of $N=n.d $ elements. The dimension $dim_{\mathbb{F}_{1^n}}(V^{\bullet}) = d $ and the general linear group $GL_d(\mathbb{F}_{1^n}) $ is the wreath product of $S_d $ with $\mu_n^{\times d} $, the identification as matrices with exactly one non-zero entry (being an n-th root of unity) in every row and every column.

This may appear as a rather sterile theory, so let us give an extremely important example, which will lead us to our second principle for developing absolute linear algebra.

Let $q=p^k $ be a prime power and let $\mathbb{F}_q $ be the finite field with $q $ elements. Assume that $q \cong 1~mod(n) $. It is well known that the group of units $\mathbb{F}_q^{\ast} $ is cyclic of order $q-1 $ so by the assumption we can identify $\mu_n $ with a subgroup of $\mathbb{F}_q^{\ast} $.

Then, $\mathbb{F}_q = (\mathbb{F}_q^{\ast})^{\bullet} $ is an $\mathbb{F}_{1^n} $-vectorspace of dimension $d=\frac{q-1}{n} $. In other words, $\mathbb{F}_q $ is an $\mathbb{F}_{1^n} $-algebra. But then, any ordinary $\mathbb{F}_q $-vectorspace of dimension $e $ becomes (via restriction of scalars) an $\mathbb{F}_{1^n} $-vector space of dimension $\frac{e(q-1)}{n} $.

Next time we will introduce more linear algebra definitions (including determinants, exact sequences, direct sums and tensor products) in the realm the absolute fields $\mathbb{F}_{1^n} $ and remarkt that we have to alter the known definitions as we can only use the scalar-multiplication. To guide us, we have the second principle : all traditional results of linear algebra over $\mathbb{F}_q $ must be recovered from the new definitions under the vector-space identification $\mathbb{F}_q = (\mathbb{F}_q^{\ast})^{\bullet} = \mathbb{F}_{1^n} $ when $n=q-1 $. (to be continued)

Leave a Comment

Looking for F_un

There are only a handful of human activities where one goes to extraordinary lengths to keep a dream alive, in spite of overwhelming evidence : religion, theoretical physics, supporting the Belgian football team and … mathematics.

In recent years several people spend a lot of energy looking for properties of an elusive object : the field with one element $\mathbb{F}_1 $, or in French : “F-un”. The topic must have reached a level of maturity as there was a conference dedicated entirely to it : NONCOMMUTATIVE GEOMETRY AND GEOMETRY OVER THE FIELD WITH ONE ELEMENT.

In this series I’d like to find out what the fuss is all about, why people would like it to exist and what it has to do with noncommutative geometry. However, before we start two remarks :

The field $\mathbb{F}_1 $ does not exist, so don’t try to make sense of sentences such as “The ‘field with one element’ is the free algebraic monad generated by one constant (p.26), or the universal generalized ring with zero (p.33)” in the wikipedia-entry. The simplest proof is that in any (unitary) ring we have $0 \not= 1 $ so any ring must contain at least two elements. A more highbrow version : the ring of integers $\mathbb{Z} $ is the initial object in the category of unitary rings, so it cannot be an algebra over anything else.

The second remark is that several people have already written blog-posts about $\mathbb{F}_1 $. Here are a few I know of : David Corfield at the n-category cafe and at his old blog, Noah Snyder at the secret blogging seminar, Kea at the Arcadian functor, AC and K. Consani at Noncommutative geometry and John Baez wrote about it in his weekly finds.

The dream we like to keep alive is that we will prove the Riemann hypothesis one fine day by lifting Weil’s proof of it in the case of curves over finite fields to rings of integers.

Even if you don’t know a word about Weil’s method, if you think about it for a couple of minutes, there are two immediate formidable problems with this strategy.

For most people this would be evidence enough to discard the approach, but, we mathematicians have found extremely clever ways for going into denial.

The first problem is that if we want to think of $\mathbf{spec}(\mathbb{Z}) $ (or rather its completion adding the infinite place) as a curve over some field, then $\mathbb{Z} $ must be an algebra over this field. However, no such field can exist…

No problem! If there is no such field, let us invent one, and call it $\mathbb{F}_1 $. But, it is a bit hard to do geometry over an illusory field. Christophe Soule succeeded in defining varieties over $\mathbb{F}_1 $ in a talk at the 1999 Arbeitstagung and in a more recent write-up of it : Les varietes sur le corps a un element.

We will come back to this in more detail later, but for now, here’s the main idea. Consider an existent field $k $ and an algebra $k \rightarrow R $ over it. Now study the properties of the functor (extension of scalars) from $k $-schemes to $R $-schemes. Even if there is no morphism $\mathbb{F}_1 \rightarrow \mathbb{Z} $, let us assume it exists and define $\mathbb{F}_1 $-varieties by requiring that these guys should satisfy the properties found before for extension of scalars on schemes defined over a field by going to schemes over an algebra (in this case, $\mathbb{Z} $-schemes). Roughly speaking this defines $\mathbb{F}_1 $-schemes as subsets of points of suitable $\mathbb{Z} $-schemes.

But, this is just one half of the story. He adds to such an $\mathbb{F}_1 $-variety extra topological data ‘at infinity’, an idea he attributes to J.-B. Bost. This added feature is a $\mathbb{C} $-algebra $\mathcal{A}_X $, which does not necessarily have to be commutative. He only writes : “Par ignorance, nous resterons tres evasifs sur les proprietes requises sur cette $\mathbb{C} $-algebre.”

The algebra $\mathcal{A}_X $ originates from trying to bypass the second major obstacle with the Weil-Riemann-strategy. On a smooth projective curve all points look similar as is clear for example by noting that the completions of all local rings are isomorphic to the formal power series $k[[x]] $ over the basefield, in particular there is no distinction between ‘finite’ points and those lying at ‘infinity’.

The completions of the local rings of points in $\mathbf{spec}(\mathbb{Z}) $ on the other hand are completely different, for example, they have residue fields of different characteristics… Still, local class field theory asserts that their quotient fields have several common features. For example, their Brauer groups are all isomorphic to $\mathbb{Q}/\mathbb{Z} $. However, as $Br(\mathbb{R}) = \mathbb{Z}/2\mathbb{Z} $ and $Br(\mathbb{C}) = 0 $, even then there would be a clear distinction between the finite primes and the place at infinity…

Alain Connes came up with an extremely elegant solution to bypass this problem in Noncommutative geometry and the Riemann zeta function. He proposes to replace finite dimensional central simple algebras in the definition of the Brauer group by AF (for Approximately Finite dimensional)-central simple algebras over $\mathbb{C} $. This is the origin and the importance of the Bost-Connes algebra.

We will come back to most of this in more detail later, but for the impatient, Connes has written a paper together with Caterina Consani and Matilde Marcolli Fun with $\mathbb{F}_1 $ relating the Bost-Connes algebra to the field with one element.

Leave a Comment

New world record obscurification

I’ve always thought of Alain Connes as the unchallengeable world-champion opaque mathematical writing, but then again, I was proven wrong.

Alain’s writings are crystal clear compared to the monstrosity the AMS released to the world : In search of the Riemann zeros – Strings, fractal membranes and noncommutative spacetimes by Michel L. Lapidus.

Here’s a generic half-page from a total of 558 pages (or rather 314, as the remainder consists of appendices, bibliography and indices…). I couldn’t find a single precise, well-defined and proven statement in the entire book.

4.2. Fractal Membranes and the Second Quantization of Fractal Strings
“The first quantization is a mystery while the second quantization is a functor” Edward Nelson (quoted in [Con6,p.515])

We briefly discuss here joint work in preparation with Ryszard Nest [LapNe1]. This work was referred to several times in Chapter 3, and, as we pointed out there, it provides mathematically rigorous construction of fractal membranes (as well as of self-similar membranes), in the spirit of noncommutative geometry and quantum field theory (as well as of string theory). It also enables us to show that the expected properties of fractal (or self-similar) membranes, derived in our semi-heuristic model presented in Sections 3.2 and 3.2. are actually satisfied by the rigorous model in [LapNe1]. In particular, there is a surprisingly good agreement between the author’s original intuition on fractal (or self-similar) membrane, conceived as an (adelic) Riemann surface with infinite genus or as an (adelic) infinite dimensional torus, and properties of the noncommutative geometric model in [LapNe1]. In future joint work, we hope to go beyond [LapNe1] and to give even more (noncommutative) geometric content to this analogy, possibly along the lines suggested in the next section (4.3).
We will merely outline some aspects of the construction, without supplying any technical details, instead referring the interested reader to the forthcoming paper [LapNe1] for a complete exposition of the construction and precise statements of results.

Can the AMS please explain to the interested person buying this book why (s)he will have to await a (possible) forthcoming paper to (hopefully) make some sense of this apparent nonsense?

Leave a Comment