Skip to content →

Tag: F1

The hype cycle of an idea

These three ideas (re)surfaced over the last two decades, claiming to have potential applications to major open problems:

  • (2000) $\mathbb{F}_1$-geometry tries to view $\mathbf{Spec}(\mathbb{Z})$ as a curve over the field with one element, and mimic Weil’s proof of RH for curves over finite fields to prove the Riemann hypothesis.
  • (2012) IUTT, for Inter Universal Teichmuller Theory, the machinery behind Mochizuki’s claimed proof of the ABC-conjecture.
  • (2014) topos theory : Connes and Consani redirected their RH-attack using arithmetic sites, while Lafforgue advocated the use of Caramello’s bridges for unification, in particular the Langlands programme.

It is difficult to voice an opinion about the (presumed) current state of such projects without being accused of being either a believer or a skeptic, resorting to group-think or being overly critical.

We lack the vocabulary to talk about the different phases a mathematical idea might be in.

Such a vocabulary exists in (information) technology, the five phases of the Gartner hype cycle to represent the maturity, adoption, and social application of a certain technology :

  1. Technology Trigger
  2. Peak of Inflated Expectations
  3. Trough of Disillusionment
  4. Slope of Enlightenment
  5. Plateau of Productivity

This model can then be used to gauge in which phase several emerging technologies are, and to estimate the time it will take them to reach the stable plateau of productivity. Here’s Gartner’s recent Hype Cycle for emerging Artificial Intelligence technologies.



Picture from Gartner Hype Cycle for AI 2021

What might these phases be in the hype cycle of a mathematical idea?

  1. Technology Trigger: a new idea or analogy is dreamed up, marketed to be the new approach to that problem. A small group of enthusiasts embraces the idea, and tries to supply proper definitions and the very first results.
  2. Peak of Inflated Expectations: the idea spreads via talks, blogposts, mathoverflow and twitter, and now has enough visibility to justify the first conferences devoted to it. However, all this activity does not result in major breakthroughs and doubt creeps in.
  3. Trough of Disillusionment: the project ran out of steam. It becomes clear that existing theories will not lead to a solution of the motivating problem. Attempts by key people to keep the idea alive (by lengthy papers, regular meetings or seminars) no longer attract new people to the field.
  4. Slope of Enlightenment: the optimistic scenario. One abandons the original aim, ditches the myriad of theories leading nowhere, regroups and focusses on the better ideas the project delivered.

    A negative scenario is equally possible. Apart for a few die-hards the idea is abandoned, and on its way to the graveyard of forgotten ideas.

  5. Plateau of Productivity: the polished surviving theory has applications in other branches and becomes a solid tool in mathematics.

It would be fun so see more knowledgable people draw such a hype cycle graph for recent trends in mathematics.

Here’s my own (feeble) attempt to gauge where the three ideas mentioned at the start are in their cycles, and here’s why:

  • IUTT: recent work of Kirti Joshi, for example this, and this, and that, draws from IUTT while using conventional language and not making exaggerated claims.
  • $\mathbb{F}_1$: the preliminary programme of their seminar shows little evidence the $\mathbb{F}_1$-community learned from the past 20 years.
  • Topos: Developing more general theory is not the way ahead, but concrete examples may carry surprises, even though Gabriel’s topos will remain elusive.

Clearly, you don’t agree, and that’s fine. We now have a common terminology, and you can point me to results or events I must have missed, forcing me to redraw my graph.

Comments closed

Two lecture series on absolute geometry

Absolute geometry is the attempt to develop algebraic geometry over the elusive field with one element $\mathbb{F}_1$. The idea being that the set of all prime numbers is just too large for $\mathbf{Spec}(\mathbb{Z})$ to be a terminal object (as it is in the category of schemes).

So, one wants to view $\mathbf{Spec}(\mathbb{Z})$ as a geometric object over something ‘deeper’, the “absolute point” $\mathbf{Spec}(\mathbb{F}_1)$.

Starting with the paper by Bertrand Toen and Michel Vaquie, Under $\mathbf{Spec}(\mathbb{Z})$, topos theory entered this topic.

First there was the proposal by Jim Borger to view $\lambda$-rings as $\mathbb{F}_1$-algebras. More recently, Alain Connes and Katia Consani introduced the arithmetic site.

Now, there are lectures series on these two approaches, one by Yuri I. Manin, the other by Alain Connes.

.

Yuri I. Manin in Ghent

On Tuesday, February 3rd, Yuri I. Manin will give the inaugural lectures of the new $\mathbb{F}_1$-seminars at Ghent University, organised by Koen Thas.

Coffee will be served from 13.00 till 14.00 at the Department of Mathematics, Ghent University, Krijgslaan 281, Building S22 and from 14.00 till 16.30 there will be lectures in the Emmy Noether lecture room, Building S25:

14:00 โ€“ 14:25: Introduction (by K. Thas)
14:30 โ€“ 15:20: Lecture 1 (by Yu. I. Manin)
15:30 โ€“ 16:20: Lecture 2 (by Yu. I. Manin)

Recent work of Manin related to $\mathbb{F}_1$ includes:

Local zeta factors and geometries under $\mathbf{Spec}(\mathbb{Z})$

Numbers as functions

Alain Connes on the Arithmetic Site

Until the beginning of march, Alain Connes will lecture every thursday afternoon from 14.00 till 17.30, in Salle 5 – Marcelin Berthelot at he College de France on The Arithmetic Site (hat tip Isar Stubbe).

Here’s a two minute excerpt, from a longer interview with Connes, on the arithmetic site, together with an attempt to provide subtitles:

——————————————————

(50.36)

And,in this example, we saw the wonderful notion of a topos, developed by Grothendieck.

It was sufficient for me to open SGA4, a book written at the beginning of the 60ties or the late fifties.

It was sufficient for me to open SGA4 to see that all the things that I needed were there, say, how to construct a cohomology on this site, how to develop things, how to see that the category of sheaves of Abelian groups is an Abelian category, having sufficient injective objects, and so on … all those things were there.

This is really remarkable, because what does it mean?

It means that the average mathematician says: “topos = a generalised topological space and I will never need to use such things. Well, there is the etale cohomology and I can use it to make sense of simply connected spaces and, bon, there’s the chrystaline cohomology, which is already a bit more complicated, but I will never need it, so I can safely ignore it.”

And (s)he puts the notion of a topos in a certain category of things which are generalisations of things, developed only to be generalisations…

But in fact, reality is completely different!

In our work with Katia Consani we saw not only that there is this epicyclic topos, but in fact, this epicyclic topos lies over a site, which we call the arithmetic site, which itself is of a delirious simplicity.

It relies only on the natural numbers, viewed multiplicatively.

That is, one takes a small category consisting of just one object, having this monoid as its endomorphisms, and one considers the corresponding topos.

This appears well … infantile, but nevertheless, this object conceils many wonderful things.

And we would have never discovered those things, if we hadn’t had the general notion of what a topos is, of what a point of a topos is, in terms of flat functors, etc. etc.

(52.27)

——————————————————-

I will try to report here on Manin’s lectures in Ghent. If someone is able to attend Connes’ lectures in Paris, I’d love to receive updates!

Comments closed

3 related new math-sites

F_un Mathematics

Hardly a ‘new’ blog, but one that is getting a new life! On its old homepage you’ll find a diagonal banner stating ‘This site has moved’ and clicking on it will guide you to its new location : cage.ugent.be/~kthas/Fun.

From now on, this site will be hosted at the University of Ghent and maintained by Koen Thas. So, please update your bookmarks and point your RSS-aggregator to the new feed.

Everyone interested in contributing to this blog dedicated to the mathematics of the field with one element should contact Koen by email.

angst

Though I may occasionally (cross)post at F_un mathematics, my own blog-life will center round a new blog to accompany the master-course ‘seminar noncommutative geometry’ I’m running at Antwerp University this semester. Its URL is noncommutative.org and it is called :

Here, angs is short for Antwerp Noncommutative Geometry Seminar and the additions @t resp. + are there to indicate we will experiment a bit trying to find useful interactions between the IRL seminar, its blog and social media such as twitter and Google+.

The seminar (and blog) are scheduled to start in earnest september 30th, but I may post some prep-notes already. This semester the seminar will try to decode Smirnov’s old idea to prove the ABC-conjecture in number theory via geometry over the field with one element and connect it with new ideas such as Borger’s $\mathbb{F}_1$-geometry using $\lambda$-rings and noncommutative ideas proposed by Connes, Consani and Marcolli.

Again, anyone willing to contribute actively is invited to send me an email or to comment on ‘angst’, tweet about it using the hashtag #angs (all such tweets will appear on the frontpage) or share its posts on Google+.

Noncommutative Arithmetic Geometry Media Library

Via the noncommutative geometry blog a new initiative maintained by Alain Connes and Katia Consani was announced : the Noncommutative Arithmetic Geometry Media Library.

This site is dedicated to maintain articles, videos, and news about meetings and activities related to noncommutative arithmetic geometry. The website is still `under construction’ and the plan is to gradually add more videos (also from past conferences and meetings), as well as papers and slides.

Comments closed