Skip to content →

Tag: blogging

NeB not among 50 best math blogs

Via Tanya Khovanova I learned yesterday of the 50 best math blogs for math-majors list by OnlineDegree.net. Tanya’s blog got in 2nd (congrats!) and most of the blogs I sort of follow made it to the list : the n-category cafe (5), not even wrong (6), Gowers (12), Tao (13), good math bad math (14), rigorous trivialities (18), the secret blogging seminar (20), arcadian functor (28) (btw. Kea’s new blog is now at arcadian pseudofunctor), etc., etc. . Sincere congrats to you all!

NeverEndingBooks didn’t make it to the list, and I can live with that. For reasons only relevant to myself, posting has slowed down over the last year and the most recent post dates back from february!

More puzzling to me was the fact that F-un mathematics got in place 26! OnlineDegree had this to say about F-un Math : “Any students studying math must bookmark this blog, which provides readers with a broad selection of undergraduate and graduate concerns, quotes, research, webcasts, and much, much more.” Well, personally I wouldn’t bother to bookmark this site as prospects for upcoming posts are virtually inexistent…

As I am privy to both sites’ admin-pages, let me explain my confusion by comparing their monthly hits. Here’s the full F-un history



After a flurry of activity in the fall of 2008, both posting and attendance rates dropped, and presently the site gets roughly 50 hits-a-day. Compare this to the (partial) NeB history



The whopping 45000 visits in january 2008 were (i think) deserved at the time as there was then a new post almost every other day. On the other hand, the green bars to the right are a mystery to me. It appears one is rewarded for not posting at all…

The only explanation I can offer is that perhaps more and more people are recovering from the late 2008-depression and do again enjoy reading blog-posts. Google then helps blogs having a larger archive (500 NeB-posts compared to about 20 genuine Fun-posts) to attract a larger audience, even though the blog is dormant.

But this still doesn’t explain why FunMath made it to the top 50-list and NeB did not. Perhaps the fault is entirely mine and a consequence of a bad choice of blog-title. ‘NeverEndingBooks’ does not ring like a math-blog, does it?

Still, I’m not going to change the title into something more math-related. NeverEndingBooks will be around for some time (unless my hard-disk breaks down). On the other hand, I plan to start something entirely new and learn from the mistakes I made over the past 6 years. Regulars of this blog will have a pretty good idea of the intended launch date, not?

Until then, my online activity will be limited to tweets.

Comments closed

Return to LaTeX

To most mathematicians, a good LaTeX-frontend (such as TeXShop for Mac-users) is the crucial tool to get the work done. We use it to draft ideas, write papers and courses, or even to take notes during lectures.

However, after six years of blogging, my own LaTeX-routine became rusty. I rarely open a new tex-document, and when I do, I’d rather copy-paste the long preamble from an old file than to start from scratch with a minimal list of packages and definitions needed for the job at hand. The few times I put a paper on the arXiv, the resulting text resembles a blog-post more than a mathematical paper, here’s an example.

As I desperately need to get some math-writing done, I need to pull myself away from the lure of an ever-open WordPress admin browser-screen and reacquaint myself with the far more efficient LaTeX-environment.

Perhaps even my blogging will benefit from the change. Whereas I used to keep on adding to most of my tex-files in order to keep them up-to-date, I rarely edit a blog-post after hitting the ’publish’ button. If I really want to turn some of my better posts into a book, I need them in a format suitable for neverending polishing, without annoying the many RSS-feed aggregators out there.

Who better than Terry Tao to teach me a more proficient way of blogging? A few days ago, Terry announced he will soon have his 5th (!!) book out, after three years of blogging…

How does he manage to do this? Well, as far as I know, Terry blogs in LaTeX and then uses a python-script called LaTeX2WP ’a program that converts a LaTeX file into something that is ready to be cut and pasted into WordPress. This way, you can write, and preview, your post in LaTeX, then run LaTeX2WP, and post into WordPress whatever comes out.’ More importantly, one retains a pure-tex-file of the post on which one can keep on editing to get it into a (book)-publishable form, eventually.

Nice, but one can do even better, as Eric from Curious Reasoning worked out. He suggests to install two useful python-packages : WordPressLib “with this library you can control remotely a WordPress installation. Use of library is very simple, you can write a small scripts or full applications that allows you to automate publishing of articles on your blog/site powered by WordPress” and plasTeX “plasTeX is a LaTeX document processing framework written entirely in Python. It currently comes bundled with an XHTML renderer (including multiple themes), as well as a way to simply dump the document to a generic form of XML”. Installation is easy : download and extract the files somewhere, go there and issue a **sudo python setup.py install** to add the packages to your python.

Finally, get Eric’s own wplatex package and install it as explained there. WpLaTeX has all the features of LaTeX2WP and much more : one can add titles, tags and categories automatically and publish the post from the command-line without ever having to enter the taboo WordPress-admin page! Here’s what I’ve written by now in TeXShop

I’ve added the screenshot and the script will know where to find it online for the blog-version as well as on my hard-disk for the tex-version. Very handy is the iftex … fi versus ifblog … fi alternative which allows you to add pure HTML to get the desired effect, when needed. Remains only to go into Terminal and issue the command

wplpost -x https://lievenlb.local/xmlrpc.php ReturnToLatex.tex

(if your blog is on WordPress.com it even suffices to give its name, rather than this work-around for stand-alone wordpress blogs). The script asks for my username and password and will convert the tex-file and post it automatic.

Comments closed

Olivier Messiaen & Mathieu 12

To mark the end of 2009 and 6 years of blogging, two musical compositions with a mathematical touch to them. I wish you all a better 2010!

Remember from last time that we identified Olivier Messiaen as the ‘Monsieur Modulo’ playing the musical organ at the Bourbaki wedding. This was based on the fact that his “modes à transposition limitée” are really about epimorphisms between modulo rings Z/12Z→Z/3Z and Z/12Z→Z/4Z.

However, Messiaen had more serious mathematical tricks up his sleeve. In two of his compositions he did discover (or at least used) one of the smaller sporadic groups, the Mathieu group $M_{12} $ of order 95040 on which we have based a whole series of Mathieu games two and a half years ago.

Messiaen’s ‘Ile de fey 2’ composition for piano (part of Quatre études de rythme (“Four studies in rhythm”), piano (1949–50)) is based on two concurrent permutations. The first is shown below, with the underlying motive rotational permutation shown.



This gives the permutation (1,7,10,2,6,4,5,9,11,12)(3,8). A second concurrent permutation is based on the permutation (1,6,9,2,7,3,5,4,8,10,11) and both of them generate the Mathieu group $M_{12} $. This can be seen by realizing the two permutations as the rotational permutations



and identifying them with the Mongean shuffles generating $M_{12} $. See for example, Dave Benson’s book “Music: A Mathematical Offering”, freely available online.

Clearly, Messiaen doesn’t use all of its 95040 permutations in his piece! Here’s how it sounds. The piece starts 2 minutes into the clip.

The second piece is “Les Yeux dans les Roues” (The Eyes in the Wheels), sixth piece from the “Livre d’Orgue” (1950/51).



According to Hauptwerk, the piece consists of a melody/theme in the pedal, accompanied by two fast-paced homorhythmic lines in the manuals. The pedal presents a sons-durées theme which is repeated six times, in different permutations. Initially it is presented in its natural form. Afterwards, it is presented alternatively picking notes from each end of the original form. Similar transformations are applied each time until the sixth, which is the retrograde of the first. The entire twelve-tone analysis (pitch only, not rhythm) of the pedal is shown below:



That is we get the following five permutations which again generate Mathieu 12 :

  • a=(2,3,5,9,8,10,6,11,4,7,12)
  • b=(1,2,4,8,9,7,11,3,6,12)(5,10)=e*a
  • c=(1,12,11,9,5,4,6,2,10,7)(3,8)=e*d
  • d=(1,11,10,8,4,5,3,7,2,9,6)
  • e=(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)

Here’s the piece performed on organ :

Considering the permutations $X=d.a^{-1} $ and $Y=(a.d^2.a.d^3)^{-1} $ one obtains canonical generators of $M_{12} $, that is, generators satisfying the defining equations of this sporadic group

$X^2=Y^3=(XY)^{11}=[X,Y]^6=(XYXYXY^{-1})^6=1 $

I leave you to work out the corresponding dessin d’enfant tonight after a couple of glasses of champagne! It sure has a nice form. Once again, a better 2010!

Comments closed