Skip to content →

neverendingbooks Posts

On the Reality of Noncommutative Space

Guest post by Fred Van Oystaeyen.

In my book “Virtual Topology and Functorial Geometry” (Taylor and Francis, 2009) I proposed a noncommutative version of space-time ; it is a toy model, but mathematically correct and I included a few philosophical remarks about : “What if reality is noncommutative ?”.

I want to add a few ideas about how “strange” ideas in quantum mechanics all fit naturally in the noncommutative world. First let us talk about noncommutative geometry in an intuitive way.

Then noncommutative space may be thought of as a set of noncommutative places but these noncommutative places need not be sets, in particular they are not sets of points. There is a noncommutative join $\vee$ and a noncommutative intersection $\wedge$, and they satify the axioms (very natural ones) of a noncommutative topology.

The non-commutativity is characterized by the existence of non $\wedge$-idempotent places, i.e. places with a nontrivial self intersection. This allows the $\wedge$ to be noncommutative. From algebraic geometric it follows that one may be interested to let $\vee$ be an abelian operation (hence defining a virtual topology) so let us assume this from hereon.

The set of $\wedge$-idempotent noncommutative-places forms the “commutative shadow” of the noncommutative space; it has operations $\vee$ and $\mathop{\wedge}\limits_{\bullet}$ which are abelian and $\sigma \mathop{\wedge}\limits_{\bullet}\tau$ may be thought of as the largest $\wedge$-idempotent smaller than $\sigma$ and $\tau$ in the partial ordering of the noncommutative space.

The $\wedge$-idempotent noncommutative places are sets in a commutative topology and these are the observable places in the noncommutative space. In the book I present a dynamic (time !) model allowing further elaboration on the noncommutative space but for now let us stick to the intuitive model and assume that space is in fact noncommutative with commutative shadow built upon our space time of physics.

In fact all observations, measurings and predictions made in physics are not about reality but about our observations of reality, so it may be an eternal fact that our observations of reality are described in our brains by commutative methods. Nevertheless we can observe effect of objects existing at noncommutative places in “neighboring” $\wedge$-idempotents sets or observable places.

First if an object exists at a noncommutative place it also exists at all subplaces (a harmless assumption not really essential for the rest). So if there is a noncommutative place, where some object exists, parts of this object may be observed at idempotent subplaces of the noncommutative place. These may even be disjoint in the commutative shadow, not “too far apart” as one object exists on the total noncommutative space.

Since only a part of the noncommutative object is observed on the $\wedge$-idempotent subplace it is not clear that one may actually recognize the observations at different commutative places as belonging to the same noncommutative object. Once one observes one observable place that object seems to exist only on that (commutative) place. Hence a quantum particle can be thought of as existing on several “places” but once observed it looks like it only exists there. This is a first natural phenomenon reflecting “strange” quantum mechanical principles.

Secondly let us look at the double slit experiment. The slits correspond to commutative places $\sigma_1$ and $\sigma_2$ and $\sigma_1 \mathop{\wedge}\limits_{\bullet}\sigma_2=\emptyset$, however in the noncommutative world $\sigma_1\wedge\sigma_2$ need not be empty, only it has no $\wedge$-idempotent subplaces !

Therefore if a photon is defined on a noncommutative place with “light”-effect on observable places “near enough” to it (in a neighborhood small enough to have an observable effect say) then the photon may pass though both slits without splitting or without splitting reality (parallel universes) but just moving into the noncommutative space inside $\sigma_1$ and $\sigma_2$ !

The observable effect at the slits will appear in commutative places near enough (for example, intersecting) to $\sigma_1$ or to $\sigma_2$. As the photon moves on, observable effects will appear in commutative places intersecting the one near to $\sigma_1$ or the one near to $\sigma_2$ and these may themselves have nonempty intersections.

At the moment the effect via $\sigma_1$ interacts with the effect via $\sigma_2$. As the photon progresses in its observed direction other $\wedge$-idempotents showing observable effects may meet and so several interactions between observable effects (via $\sigma_1$ and $\sigma_2$) build a picture of interference.

The symmetry of this picture actually suggests a symmetric arrangement of commutative places around a noncommutative place. So the noncommutativity of space may explain this phenomenon without holographic principle or parallel universes.

In a similar way dark mass may well be mass existing in a non-observable noncommutative place (i.e. containing no observable places). If a lot of mass is in a non-observable noncommutative place its gravity may pull matter from surrounding observable places into the noncommutative place and this may explain black holes. All kinds of problems relating to black holes may have natural non commutative solutions, e.g. information may pass from observable places to noncommutative places and is not lost, only non-observable.

In fact is the definition of information not depending on the nature and capability of the recipient ? There are many philosophically interesting ramifications of these ideas, for example every chemical or neurochemical activity should also be placed in the noncommutative space.

In the book I mentioned how “free will” could be a noncommutative space aspect of the brain activity. I also mention a possible relations with string theory. I am not a specialist in all these things but now I reached the point that I “feel” noncommutative space is a better approximation of the reality and one should investigate it further.

Comments closed

changes (ahead)

In view or recents events & comments, some changes have been made or will be made shortly :

categories : Sanitized the plethora of wordpress-categories to which posts belong. At the moment there are just 5 categories : ‘stories’ and ‘web’ (for all posts with low math-content) and three categories ‘level1’, ‘level2’ and ‘level3’, loosely indicating the math-difficulty of a post.

MathJax : After years of using LatexRender and WP-Latex, we’ll change to MathJax from now on. I’ll try to convert older posts as soon as possible. (Update : did a global search and replace. ‘Most’ LaTeX works, major exceptions being matrices and xymatrix commands. I’ll try to fix those later with LatexRender.)

theme : The next couple of days, the layout of this site may change randomly as I’ll be trying out things with the Swift wordpress theme. Hopefully, this will converge to a new design by next week.

name : Neverendingbooks will be renamed to something more math-related. Clearly, the new name will depend on the topics to be covered. On the main index page a pop-up poll will appear in the lower right-hand corner after 10 seconds. Please fill in the topics you’d like us to cover (no name or email required).

This poll will close on friday 21st at 12 CET and its outcome will influence name/direction of this blog. Use it also if you have a killer newname-suggestion. Among the responses so far, a funnier one : “An intro to, or motivation for non-commutative geometry, aimed at undergraduates. As a rule, I’d take what you think would be just right for undergrads, and then trim it down a little more.”

guest-posts : If you’d like to be a guest-blogger here at irregular times, please contact me. The first guest-post will be on noncommutative topology and the interpretation of quantum physics, and will appear soon. So, stay tuned…

Comments closed

the Reddit (after)effect

Sunday january 2nd around 18hr NeB-stats went crazy.

Referrals clarified that the post ‘What is the knot associated to a prime?’ was picked up at Reddit/math and remained nr.1 for about a day.

Now, the dust has settled, so let’s learn from the experience.

A Reddit-mention is to a blog what doping is to a sporter.

You get an immediate boost in the most competitive of all blog-stats, the number of unique vistors (blue graph), but is doesn’t result in a long-term effect, and, it may even be harmful to more essential blog-stats, such as the average time visitors spend on your site (yellow graph).

For NeB the unique vistors/day fluctuate normally around 300, but peaked to 1295 and 1733 on the ‘Reddit-days’. In contrast, the avg. time on site is normally around 3 minutes, but dropped the same days to 44 and 30 seconds!

Whereas some of the Reddits spend enough time to read the post and comment on it, the vast majority zap from one link to the next. Having monitored the Reddit/math page for two weeks, I’m convinced that post only made it because it was visually pretty good. The average Reddit/math-er is a viewer more than a reader…

So, should I go for shorter, snappier, more visual posts?

Let’s compare Reddits to those coming from the three sites giving NeB most referrals : Google search, MathOverflow and Wikipedia.

This is the traffic coming from Reddit/math, as always the blue graph are the unique visitors, the yellow graph their average time on site, blue-scales to the left, yellow-scales to the right.

Here’s the same graph for Google search. The unique visitors/day fluctuate around 50 and their average time on site about 2 minutes.

The math-related search terms most used were this month : ‘functor of point approach’, ‘profinite integers’ and ‘bost-connes sytem’.

More rewarding to me are referrals from MathOverflow.

The number of visitors depends on whether the MathO-questions made it to the front-page (for example, the 80 visits on december 15, came from the What are dessins d’enfants?-topic getting an extra comment that very day, and having two references to NeB-posts : The best rejected proposal ever and Klein’s dessins d’enfant and the buckyball), but even older MathO-topics give a few referrals a day, and these people sure take their time reading the posts (+ 5 minutes).

Other MathO-topics giving referrals this month were Most intricate and most beautiful structures in mathematics (linking to Looking for F-un), What should be learned in a first serious schemes course? (linking to Mumford’s treasure map (btw. one of the most visited NeB-posts ever)), How much of scheme theory can you visualize? (linking again to Mumford’s treasure map) and Approaches to Riemann hypothesis using methods outside number theory (linking to the Bost-Connes series).

Finally, there’s Wikipedia

giving 5 to 10 referrals a day, with a pretty good time-on-site average (around 4 minutes, peaking to 12 minutes). It is rewarding to see NeB-posts referred to in as diverse Wikipedia-topics as ‘Fifteen puzzle’, ‘Field with one element’, ‘Evariste Galois’, ‘ADE classification’, ‘Monster group’, ‘Arithmetic topology’, ‘Dessin d’enfant’, ‘Groupoid’, ‘Belyi’s theorem’, ‘Modular group’, ‘Cubic surface’, ‘Esquisse d’un programme’, ‘N-puzzle’, ‘Shabat polynomial’ and ‘Mathieu group’.

What lesson should be learned from all this data? Should I go for shorter, snappier and more visual posts, or should I focus on the small group of visitors taking their time reading through a longer post, and don’t care about the appallingly high bounce rate the others cause?

Comments closed