Skip to content →

neverendingbooks Posts

counting down


Clearly the best thing to do for me right now would be to get into
the car and drive a 1000km south to our regular place in France. The
weather should still be good enough to have lunch outside wearing only
a T-shirt, the colours of the leaves will be splendid and the grapes
'a point'. But then we all have resp. work to finish, schools
to attend and courses to teach so all of this will have to be delayed
just a little bit longer…
Some people are more fortunate.
According to her october column, Jeanette Winterson did spend most of
september in France and the daily routine she describes resembles ours
quite well. Mind you, there are differences. Whereas she goes for a
Kir I'll prefer a proper Pastis any time. She drinks the local
white wine, we go for the Rose (weather and supply permitting…)
from the Cave Cooperative 'La Cevenole' in
Rosieres
. She only has to cycle 4 kilometers to get into

… a remote village enjoying two bakeries, a
butcher, a greengrocer, a fabulous deli, and a bar.

For us the nearest village having all of this on offer is Joyeuse and it takes 45 minutes by
car along narrow and winding roads to get there (1hr by bicycle to,
2hrs by bicycle back). The more important facts are similar though as
Jeanette Winterson describes in her september column :

It was a good day
to slow down, and now that I am here, I will find a different rhythm,
or rather, re-find the rhythm natural to me.Of course, what’s
important to me may not be important to you, different priorities are
fine, but I think we should make intelligent choices. The fact is that
a lot of what we do isn’t a choice at all, intelligent or stupid, we
just do it passively, and wonder where the day has gone.

How
many days in a life?

And when it’s gone, it’s gone.

I can hear a woodpecker tapping away like me. Maybe that
woodpecker is writing its memoirs. The woodpecker can hear me tapping
too. I am right by its tree, high up, in a top turret room. This
sympathetic Morse code makes me feel part of the life of the tree. It
is easier here to belong to other life forms, other ways of life. I am
aware of all the noises, the scents, the temperature. In the city, we
spend a lot of energy shutting life out – the noise, the aggression,
the crowded feel. It is such a relief to let life in, and even as I
write those words, I wonder how bonkers we are, making a life that is
anti-life; a life where life has to be shut out.

Leave a Comment

a cosmic Galois group

Are
there hidden relations between mathematical and physical constants such
as

$\frac{e^2}{4 \pi \epsilon_0 h c} \sim \frac{1}{137} $

or are these numerical relations mere accidents? A couple of years
ago, Pierre Cartier proposed in his paper A mad day’s work : from Grothendieck to Connes and
Kontsevich : the evolution of concepts of space and symmetry
that
there are many reasons to believe in a cosmic Galois group acting on the
fundamental constants of physical theories and responsible for relations
such as the one above.

The Euler-Zagier numbers are infinite
sums over $n_1 > n_2 > ! > n_r \geq 1 $ of the form

$\zeta(k_1,\dots,k_r) = \sum n_1^{-k_1} \dots n_r^{-k_r} $

and there are polynomial relations with rational coefficients between
these such as the product relation

$\zeta(a)\zeta(b)=\zeta(a+b)+\zeta(a,b)+\zeta(b,a) $

It is
conjectured that all polynomial relations among Euler-Zagier numbers are
consequences of these product relations and similar explicitly known
formulas. A consequence of this conjecture would be that
$\zeta(3),\zeta(5),\dots $ are all trancendental!

Drinfeld
introduced the Grothendieck-Teichmuller group-scheme over $\mathbb{Q} $
whose Lie algebra $\mathfrak{grt}_1 $ is conjectured to be the free Lie
algebra on infinitely many generators which correspond in a natural way
to the numbers $\zeta(3),\zeta(5),\dots $. The Grothendieck-Teichmuller
group itself plays the role of the Galois group for the Euler-Zagier
numbers as it is conjectured to act by automorphisms on the graded
$\mathbb{Q} $-algebra whose degree $d $-term are the linear combinations
of the numbers $\zeta(k_1,\dots,k_r) $ with rational coefficients and
such that $k_1+\dots+k_r=d $.

The Grothendieck-Teichmuller
group also appears mysteriously in non-commutative geometry. For
example, the set of all Kontsevich deformation quantizations has a
symmetry group which Kontsevich conjectures to be isomorphic to the
Grothendieck-Teichmuller group. See section 4 of his paper Operads and motives in
deformation quantzation
for more details.

It also appears
in the renormalization results of Alain Connes and Dirk Kreimer. A very
readable introduction to this is given by Alain Connes himself in Symmetries Galoisiennes
et renormalisation
. Perhaps the latest news on Cartier’s dream of a
cosmic Galois group is the paper by Alain Connes and Matilde Marcolli posted
last month on the arXiv : Renormalization and
motivic Galois theory
. A good web-page on all of this, including
references, can be found here.

Leave a Comment

hyper-resolutions

[Last time][1] we saw that for $A$ a smooth order with center $R$ the
Brauer-Severi variety $X_A$ is a smooth variety and we have a projective
morphism $X_A \rightarrow \mathbf{max}~R$ This situation is
very similar to that of a desingularization $~X \rightarrow
\mathbf{max}~R$ of the (possibly singular) variety $~\mathbf{max}~R$.
The top variety $~X$ is a smooth variety and there is a Zariski open
subset of $~\mathbf{max}~R$ where the fibers of this map consist of just
one point, or in more bombastic language a $~\mathbb{P}^0$. The only
difference in the case of the Brauer-Severi fibration is that we have a
Zariski open subset of $~\mathbf{max}~R$ (the Azumaya locus of A) where
the fibers of the fibration are isomorphic to $~\mathbb{P}^{n-1}$. In
this way one might view the Brauer-Severi fibration of a smooth order as
a non-commutative or hyper-desingularization of the central variety.
This might provide a way to attack the old problem of construction
desingularizations of quiver-quotients. If $~Q$ is a quiver and $\alpha$
is an indivisible dimension vector (that is, the component dimensions
are coprime) then it is well known (a result due to [Alastair King][2])
that for a generic stability structure $\theta$ the moduli space
$~M^{\theta}(Q,\alpha)$ classifying $\theta$-semistable
$\alpha$-dimensional representations will be a smooth variety (as all
$\theta$-semistables are actually $\theta$-stable) and the fibration
$~M^{\theta}(Q,\alpha) \rightarrow \mathbf{iss}_{\alpha}~Q$ is a
desingularization of the quotient-variety $~\mathbf{iss}_{\alpha}~Q$
classifying isomorphism classes of $\alpha$-dimensional semi-simple
representations. However, if $\alpha$ is not indivisible nobody has
the faintest clue as to how to construct a natural desingularization of
$~\mathbf{iss}_{\alpha}~Q$. Still, we have a perfectly reasonable
hyper-desingularization $~X_{A(Q,\alpha)} \rightarrow
\mathbf{iss}_{\alpha}~Q$ where $~A(Q,\alpha)$ is the corresponding
quiver order, the generic fibers of which are all projective spaces in
case $\alpha$ is the dimension vector of a simple representation of
$~Q$. I conjecture (meaning : I hope) that this Brauer-Severi fibration
contains already a lot of information on a genuine desingularization of
$~\mathbf{iss}_{\alpha}~Q$. One obvious test for this seemingly
crazy conjecture is to study the flat locus of the Brauer-Severi
fibration. If it would contain info about desingularizations one would
expect that the fibration can never be flat in a central singularity! In
other words, we would like that the flat locus of the fibration is
contained in the smooth central locus. This is indeed the case and is a
more or less straightforward application of the proof (due to [Geert Van
de Weyer][3]) of the Popov-conjecture for quiver-quotients (see for
example his Ph.D. thesis [Nullcones of quiver representations][4]).
However, it is in general not true that the flat-locus and central
smooth locus coincide. Sometimes this is because the Brauer-Severi
scheme is a blow-up of the Brauer-Severi of a nicer order. The following
example was worked out together with [Colin Ingalls][5] : Consider the
order $~A = \begin{bmatrix} C[x,y] & C[x,y] \\ (x,y) & C[x,y]
\end{bmatrix}$ which is the quiver order of the quiver setting
$~(Q,\alpha)$ $\xymatrix{\vtx{1} \ar@/^2ex/[rr] \ar@/^1ex/[rr]
& & \vtx{1} \ar@/^2ex/[ll]} $ then the Brauer-Severi fibration
$~X_A \rightarrow \mathbf{iss}_{\alpha}~Q$ is flat everywhere except
over the zero representation where the fiber is $~\mathbb{P}^1 \times
\mathbb{P}^2$. On the other hand, for the order $~B =
\begin{bmatrix} C[x,y] & C[x,y] \\ C[x,y] & C[x,y] \end{bmatrix}$
the Brauer-Severi fibration is flat and $~X_B \simeq \mathbb{A}^2 \times
\mathbb{P}^1$. It turns out that $~X_A$ is a blow-up of $~X_B$ at a
point in the fiber over the zero-representation.

[1]: https://lievenlb.local/index.php?p=342
[2]: http://www.maths.bath.ac.uk/~masadk/
[3]: http://www.win.ua.ac.be/~gvdwey/
[4]: http://www.win.ua.ac.be/~gvdwey/papers/thesis.pdf
[5]: http://kappa.math.unb.ca/~colin/

Leave a Comment