Skip to content →

Category: number theory

How to dismantle scheme theory?

In several of his talks on #IUTeich, Mochizuki argues that usual scheme theory over $\mathbb{Z}$ is not suited to tackle problems such as the ABC-conjecture.

The idea appears to be that ABC involves both the additive and multiplicative nature of integers, making rings into ‘2-dimensional objects’ (and clearly we use both ‘dimensions’ in the theory of schemes).

So, perhaps we should try to ‘dismantle’ scheme theory, and replace it with something like geometry over the field with one element $\mathbb{F}_1$.

The usual $\mathbb{F}_1$ mantra being: ‘forget all about the additive structure and only retain the multiplicative monoid’.

So perhaps there is yet another geometry out there, forgetting about the multiplicative structure, and retaining just the addition…

This made me wonder.

In the forgetting can’t be that hard, can it?-post we have seen that the forgetful functor

\[
F_{+,\times}~:~\mathbf{rings} \rightarrow \mathbf{sets} \]

(that is, forgetting both multiplicative and additive information of the ring) is representable by the polynomial ring $\mathbb{Z}[x]$.

So, what about our ‘dismantling functors’ in which we selectively forget just one of these structures:

\[
F_+~:~\mathbf{rings} \rightarrow \mathbf{monoids} \quad \text{and} \quad F_{\times}~:~\mathbf{rings} \rightarrow \mathbf{abelian~groups} \]

Are these functors representable too?

Clearly, ring maps from $\mathbb{Z}[x]$ to our ring $R$ give us again the elements of $R$. But now, we want to encode the way two of these elements add (or multiply).

This can be done by adding extra structure to the ring $\mathbb{Z}[x]$, namely a comultiplication $\Delta$ and a counit $\epsilon$

\[
\Delta~:~\mathbb{Z}[x] \rightarrow \mathbb{Z}[x] \otimes \mathbb{Z}[x] \quad \text{and} \quad \epsilon~:~\mathbb{Z}[x] \rightarrow \mathbb{Z} \]

The idea of the comultiplication being that if we have two elements $r,s \in R$ with corresponding ring maps $f_r~:~\mathbb{Z}[x] \rightarrow R \quad x \mapsto r$ and $f_s~:~\mathbb{Z}[x] \rightarrow R \quad x \mapsto s$, composing their tensorproduct with the comultiplication

\[
f_v~:~\mathbb{Z}[x] \rightarrow^{\Delta} \mathbb{Z}[x] \otimes \mathbb{Z}[x] \rightarrow^{f_r \otimes f_s} R
\]

determines another element $v \in R$ which we can take either the product $v=r.s$ or sum $v=r+s$, depending on the comultiplication map $\Delta$.

The role of the counit is merely sending $x$ to the identity element of the operation.

Thus, if we want to represent the functor forgetting the addition, and retaining the multiplication we have to put on $\mathbb{Z}[x]$ the structure of a biring

\[
\Delta(x) = x \otimes x \quad \text{and} \quad \epsilon(x) = 1 \]

(making $x$ into a ‘group-like’ element for Hopf-ists).

The functor $F_{\times}$ forgetting the multiplication but retaining the addition is represented by the Hopf-ring $\mathbb{Z}[x]$, this time with

\[
\Delta(x) = x \otimes 1 + 1 \otimes x \quad \text{and} \quad \epsilon(x) = 0 \]

(that is, this time $x$ becomes a ‘primitive’ element).

Perhaps this adds another feather of weight to the proposal in which one defines algebras over the field with one element $\mathbb{F}_1$ to be birings over $\mathbb{Z}$, with the co-ring structure playing the role of descent data from $\mathbb{Z}$ to $\mathbb{F}_1$.

As, for example, in my note The coordinate biring of $\mathbf{Spec}(\mathbb{Z})/\mathbb{F}_1$.

Comments closed

Moonshine for everyone

Today, Samuel Dehority, Xavier Gonzalez, Neekon Vafa and Roger Van Peski arXived their paper Moonshine for all finite groups.

Originally, Moonshine was thought to be connected to the Monster group. McKay and Thompson observed that the first coefficients of the normalized elliptic modular invariant

\[
J(\tau) = q^{-1} + 196884 q + 21493760 q^2 + 864229970 q^3 + \ldots
\]

could be written as sums of dimensions of the first few irreducible representations of the monster group:

\[
1=1,~\quad 196884=196883+1,~\quad 21493760=1+196883+21296876,~\quad … \]

Soon it transpired that there ought to be an infinite dimensional graded vectorspace, the moonshine module

\[
V^{\sharp} = \bigoplus_{n=-1}^{\infty}~V^{\sharp}_n \]

with every component $V^{\sharp}_n$ being a representation of the monster group $\mathbb{M}$ of which the dimension coincides with the coefficient of $q^n$ in $J(\tau)$.

It only got better, for any conjugacy class $[ g ]$ of the monster, if you took the character series

\[
T_g(\tau) = \sum_{n=-1}^{\infty} Tr(g | V^{\sharp}_n) q^n \]

you get a function invariant under the action of the subgroup

\[
\Gamma_0(n) = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}~:~c = 0~mod~n \} \]

acting via transformations $\tau \mapsto \frac{a \tau + b}{c \tau + d}$ on the upper half plane where $n$ is the order of $g$ (or, for the experts, almost).

Soon, further instances of ‘moonshine’ were discovered for other simple groups, the unifying feature being that one associates to a group $G$ a graded representation $V$ such that the character series of this representation for an element $g \in G$ is an invariant modular function with respect to the subgroup $\Gamma_0(n)$ of the modular group, with $n$ being the order of $g$.

Today, this group of people proved that there is ‘moonshine’ for any finite group whatsoever.

They changed the definition of moonshine slightly to introduce the notion of moonshine of depth $d$ which meant that they want the dimension sequence of their graded module to be equal to $J(\tau)$ under the action of the normalized $d$-th Hecke operator, which means equal to

\[
\sum_{ac=d,0 \leq b < c} J(\frac{a \tau + b}{c}) \]
as they are interested in the asymptotic behaviour of the components $V_n$ with respect to the regular representation of $G$.

What baffled me was their much weaker observation (remark 2) saying that you get ‘moonshine’ in the form described above, that is, a graded representation $V$ such that for every $g \in G$ you get a character series which is invariant under $\Gamma_0(n)$ with $n=ord(g)$ (and no smaller divisor of $n$), for every finite group $G$.

And, more importantly, you can explain this to any student taking a first course in group theory as all you need is Cayley’s theorem stating that any finite group is a subgroup of some symmetric group $S_n$.

Here’s the idea: take the original monster-moonshine module $V^{\sharp}$ but forget all about the action of $\mathbb{M}$ (that is, consider it as a plain vectorspace) and consider the graded representation

\[
V = (V^{\sharp})^{\otimes n} \]

with the natural action of $S_n$ on the tensor product.

Now, embed a la Cayley $G$ into $S_n$ then you know that the order of $g \in G$ is the least common multiple of the cycle lengths of the permutation it it send to. Now, it is fairly trivial to see that the character series of $V$ with respect to $g$ (having cycle lengths $(k_1,k_2,\dots,k_l)$, including cycles of length one) is equal to the product

\[
J(k_1 \tau) J(k_2 \tau) \dots J(k_l \tau) \]

which is invariant under $\Gamma_0(n)$ with $n = lcm(k_i)$ (but no $\Gamma_0(m)$ with $m$ a proper divisor of $n$).

For example, for $G=S_4$ we have as character series of $(V^{\sharp})^{\otimes 4}$

\[
(1)(2)(3)(4) \mapsto J(\tau)^4 \]

\[
(12)(3)(4) \mapsto J(2 \tau) J(\tau)^2 \]

\[
(12)(34) \mapsto J(2 \tau)^2 \]

\[
(123)(4) \mapsto J(3 \tau) J(\tau) \]

\[
(1234) \mapsto J(4 \tau) \]

Clearly, the main results of the paper are much more subtle, but I’m already happy with this version of ‘moonshine for everyone’!

Comments closed

Toposes alive and kicking at IHES

After 50 years, vivid interest in topos theory seems to have returned to one of the most prestigious research institutes, the IHES. Last november, there was the meeting Topos a l’IHES.

At the meeting, Celine Loozen filmed a documentary which is supposed to have as its title “Unifying Worlds”. Its very classy trailer is now on YouTube (via +David Roberts).

How did topos theory, a topic considered by most to be far too abstract to be useful to main stream mathematics, suddenly return in such force?

It always helps when a couple of world-class mathematicians become interest in the topic, for their own particular reasons. Clearly, the topic gathers considerable momentum if these people are all permanent members of the IHES.

A lot of geometric information is contained in the category of all sheaves on the geometric object. Topos theory offers a way to construct ‘geometries’ out of nothing, that is, out of arbitrary categories.

Take your favourite category $\mathbf{C}$, then “presheaves” on $\mathbf{C}$ are defined to be contravariant functors $\mathbf{C} \rightarrow \mathbf{Sets}$. For any Grothendieck topology on $\mathbf{C}$ one can then restrict to the sub-category of “sheaves” for this topology, and that’s your typical topos.

Alain Connes got interested in topos theory because he observed that even for the most trivial of categories, such as the monoid category with just one object and endomorphisms the multiplicative semigroup $\mathbb{N}_{\geq 1}^{\times}$, and taking the coarsest of all Grothendieck topologies, one gets interesting objects of baffling complexity.

One of the ‘invariants’ one can associate to a topos is its collection of “points”. Together with Katia Consani, Connes computed in Geometry of the Arithmetic Site that the collection of points of this simple presheaf topos is exactly the set of adele classes $\mathbb{Q}^{\ast}_+ \backslash \mathbb{A}^f_{\mathbb{Q}} / \hat{\mathbb{Z}}^{\ast}$.

Here’s what Connes himself said about this revelation (followed by an attempted translation):

——————————————————

(50.36)

And,in this example, we saw the wonderful notion of a topos, developed by Grothendieck.

It was sufficient for me to open SGA4, a book written at the beginning of the 60ties or the late fifties.

It was sufficient for me to open SGA4 to see that all the things that I needed were there, say, how to construct a cohomology on this site, how to develop things, how to see that the category of sheaves of Abelian groups is an Abelian category, having sufficient injective objects, and so on … all those things were there.

This is really remarkable, because what does it mean?

It means that the average mathematician says: “topos = a generalised topological space and I will never need to use such things. Well, there is the etale cohomology and I can use it to make sense of simply connected spaces and, bon, there’s the chrystaline cohomology, which is already a bit more complicated, but I will never need it, so I can safely ignore it.”

And (s)he puts the notion of a topos in a certain category of things which are generalisations of things, developed only to be generalisations…

But in fact, reality is completely different!

In our work with Katia Consani we saw not only that there is this epicyclic topos, but in fact, this epicyclic topos lies over a site, which we call the arithmetic site, which itself is of a delirious simplicity.

It relies only on the natural numbers, viewed multiplicatively.

That is, one takes a small category consisting of just one object, having this monoid as its endomorphisms, and one considers the corresponding topos.

This appears well … infantile, but nevertheless, this object conceils many wonderful things.

And we would have never discovered those things, if we hadn’t had the general notion of what a topos is, of what a point of a topos is, in terms of flat functors, etc. etc.

(52.27)

——————————————————-

Pierre Cartier has a very wide interest in mathematical theories, the wilder the better: Witt rings, motifs, cosmic Galois groups, toposes…

He must have been one of the first people to speak about toposes at the Bourbaki seminar. In february 1978 he gave the talk Logique, categories et faisceaux, d’apres F. Lawvere et M. Tierney (and dedicated to Grothendieck’s 50th birthday).

He also gave the opening lecture of the Topos a l’IHES conference.

In this fragment of an interview with Stephane Dugowson and Anatole Khelif in 2014 he plays down his own role in the development of topos theory, compared to his contributions in other fields, such as motifs.

——————————————————-

(46:24)

Well, I didn’t invest much time in topos theory.

Except, I once gave a talk at the Bourbaki seminar on the use of topos theory in logic, such as the independence of the axiom of choice, that is, on the idea of forcing.

But, it was just this talk, I didn’t do anything original in it.

Then there is nonstandard analysis, where one can formulate certain things in terms of topos theory. When I got interested in nonstandard analysis, I had this possible application of topos theory in mind.

At the moment when you have a nonstandard model of the integers or more generally of set theory, then one has two models of set theory, that is two different toposes, and then one obviously tries to compare them.

In that sense, I was completely aware of the fact that everything I was doing could be expressed in the language of toposes,or at least in the philosophy of toposes.

I haven’t made any important contributions in that theory, for me it merely remained a tool.

(47:49)

——————————————————-

Laurent Lafforgue says he spend hundredths and hundredths of hours talking to Olivia Caramello about topos theory.

She must have been quite convincing. The last couple of years Lafforgue is a fierce advocate of Caramello’s work.

Her basic idea is that the same topos can arise from two very different mathematical settings (that is, two different categories with Grothendieck topologies can have equivalent categories of sheaves).

The hope then is to translate results from one theory to the other, or as she expresses it, toposes can be used as “bridges” between different mathematical topics.

At the moment though, is seems a bit far fetched for this idea to be relevant to the Langlands programme.

Caramello and Lafforgue have just a paper out: Sur la dualit´e des topos et de leurs pr´esentations et ses applications : une introduction.

The paper is based on a lecture Lafforgue gave in April in Nantes. Here’s the video:

In the introduction they write:

“It is our conviction that the theory of toposes and their representations, with its essential and structural ambiguity, is destined to have an impact on mathematics comparable to the impact group theory has had from the moment, some decades after its discovery by Galois, the mathematical community began to understand it.”

Comments closed