
1 : Thanks to Gunther for gently pushing me to give this talk. As you see
the stress should be on algebraic rather than on D-branes. What we will do is
take a naive algebraic view on Polchinski’s interpretation of D-branes, drop all
physics from it and what remains is still an interesting question on algebra maps
to Azumaya algebras, a natural generalization of classical representation theory of
algebras.

I will use this problem as an excuse to recall some results in a particular brand
of noncommutative algebraic geometry based on representation schemes, and try
to explain why we do the things we do the way we do them.

Perhaps i should stress that all my algebras have a unit element and are defined
over the complex numbers and all are finitely generated. So a typical commutative
algebra would be the coordinate ring of an affine variety but we allow noncommu-
tative algebras such as path algebras of quivers and their quotients.

2 : The algebras we will associate to D-branes are Azumaya algebras which are
locally in the etale or analytic topology full matrixrings over the center. If the size
of the matrices is n we will say that A is an Azumaya algebra of degree n.

Azumaya algebras with the same center form a symmetric monoidal category
inder tensor-product and the Morita equivalence classes of such algebras form an
Abelian group called the Brauer group of the center, which can be computed and
is an important geometric invariant.

The bimodules of an Azumaya algebra are equivalent to modules over the center
and as most noncommutative geometric constructions are made out of bimodules,
the noncommutative geometry of Azumaya algebras is therefore expected to be
almost the same as the central geometry.

A consequence is that maps from Azumaya algebras are fully determined by their
image and the centralizer of the image, so RA denotes all elements of R commuting
with the image of A. If R is also an Azumaya algebra so is this centralizer ring
which is a form of the double centralizer theorem.

3: Let’s give some examples which will be familiar to most of you. Take
the 2-dimensional torus with coordinate ring the Laurant polynmials in s and t
and consider the quantum-torus at an n-th root of unity, then this is an Azumaya
algebra of degree n over teh torus and its class in the Brauer group has order n.

If we consider these algebras for all n, they will generate the Brauer group of
the torus which is isomorphic to Q/Z. So, in general the Brauer group is pretty big
and for toric varieties their exists a combinatorial description of it.

4 : Now let’s turn to Polchinski’s interpretation of D-branes which are (as
you all know far better than i do) boundary conditions for open string states. If
you have just one D-brane then it is equipped with a U(1)-gauge field and to an
algebraic geometer would see the brane just as a subvariety of space-time.

But if you stack n branes on the same subvariety then there is a gauge enhance-
ment to U(n), the reason being that there are now massless string states between
the different sheets and they behave like the matrix-elements Eij . So this stack of n
D-branes becomes a noncommutative object which locally looks like n×n matrices,
that is an Azumaya algebra.
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So purely in algebraic terms, if you have 1 brane its inclusion in space time
is determined by the epimorphism between teh coordinaterings restricting regular
function of space-time to the brane.

However, if you have a stack of n branes then the inclusion in space-time gives an
algebra morphism from the coordinate ring of space-time to this noncommutative
object which is an Azumaya algebra over your subvariety X.

5 : In analogy with commutative algebraic geometry one would like to assign
noncommutative geometric objects to the Azumaya algebra (and possibly to the
space-time Y ) and a map describing the embedding which allows one to reconstruct
from it the given algebra map.

Liu and Yau tried to address this problem in a neverending series of papers on
the arxiv and they called their approach ’Azumaya noncommutatiev geometry’

But they quickly ran into problems well-known to ringtheorists for over 40 years
namely that most proposals to assign a prime-spectrum and structure sheaf to a
noncommutative algebra do not behave functorially.

Let’s consider the easiest of situations, that of an algebraic D-brane on the affine
line, or in other words an n-dimensional representation of the polynomial ring in
one variable. Now in all dialects in noncommutative geometry one would associate
to complex n × n matrices as space just one point. But there is no point on the
affine line containing enough information to reconstruct the representation which
is given by sending x to a complex matrix. So one would assume that this map
determines a degree n subscheme of teh affine line containing information about
the eigenvalues of the matrix and their multiplicities. So we would rather expect
the noncommutative gadget corresponding to C[x] able to describe all embeddings
of D0-branes to be something like the Hilbert scheme, so something n-dimensional.

The main problem we will address is what the appropriate space should be for
more complicated space-times and more complicated Azumaya algebras.

6 : So how does noncommutative algebraic geometry deals with this failure
of functoriality. Well, to be honest we cheat a little bit. Instead of assigning
some prime spectrum to an algebra we associate to it something that is obviously
functorial with respect to algebra maps. Some take this object to be the category
of modules or its derived category, we will take a somewhat smaller object namely
teh category of all finite dimensional representations of the algebra. Restriction
of scalars then gives a map between these objects which is a functor between the
categories. Clearly the game is then to determine how much information of the
algebra we can recover from this so called geometric object.

So, are we doing just category theory? Well not quite, we can approximate
the full category by looking at the set of all n-dimensional representations which
we will see in a moment is an ordinary commutative variety, so we can view our
noncommutative geometric object as a limit of commutative varieties.

Isomorphism or representations gives an action of PGLn on this variety and a
program started by Artin and Procesi a long time ago was to use the tools of Mum-
ford’s geometric invariant theory in order to study these level n approximations of
our object.

So, are we just doing equivariant commutative geometry? Not quite. First
of all there are plenty of PGLn-varieties which are not representation varieties
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and we are not interested in all equivariant data, but only the data induced from
noncommutative geometric gadgets defined on R. So, for example, derivations of
R should induce equivariant vector-fields on all these representation varieties.

So let us define all this more carefully and see what the main results are in this
outskirt of noncommutative algebraic geometry.

7 : An unconventional way to describe these representation varieties is by using
an old idea of George Bergman. Define the n-th root of an algebra R to be the
centralizer of complex n×n matrices in the free product of R with it. Now because
Mn(C) is an Azumaya algebra we can recover this free product by tensoring this
centralizer ring with Mn(C).

Then it follows quickly from universal properties of these rings that this n-th
root algebra represents the representation functor on all algebras, by this we may
that for any algebra B the set of algebra maps from the n-th root of R to B is
equal to the set the functor associates to B, in this case the set of all algebra maps
from R to full matrices over B.

But this is still all rather formal noncommutative algebra and we would like to
have genuine commutative geometric objects giving level n approximations of this
full noncommutative thing.

8 : Grothendieck’s approach to algebraic geometry was to stress the importance
of representatble functors from commutative algebras to sets. Such a functor is
called an affine scheme if there is an affine commutative algebra C[X] called the
coordinate ring of the variety representing this functor.

Consider the functor which assigns to a commutative algebra C the set of all
algebra maps from R to n × n matrices over C. For example, the complex points
are just the n-dimensional representations of R and that’s why we call this the n-th
representation scheme and using Bergman’s result we see that it is represented by
the abelinization of the n-th root of R, that is we have that the coordinate ring of
the representation scheme is just the abelianized n-th root algebra.

9 : But what are the advantages of this wildly universal algebra approach?
First we can define a universal map jn allowing us to view elements of R as n×n

matrices over this coordinate ring and this map will be important later on.
Secondly it gives us a way to describe the PGLn-action on the representation

scheme coming from the usual action by conjugation on complex matrices and using
representability and then abelianization.

But perhaps most importantly we can mimick this construction for other cat-
egories of algebras in which we can form free products and define commutators.
For example if you consider super-algebras you get this way a super-representation
scheme, if you take graded algebras you get graded representation schemes and if
you take differential graded algebras you can define in this way the derived repre-
sentation schemes on which Yuri Berest will talk on wednesday.

But let us return to these ordinary representation schemes and recall the most
important results about them.

10 : Ideally if you have a scheme with a group action you would like to describe
the orbits, in our case the isomorphism classes of n-dimensional representations.
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Now, Geometric invariant theory tells us that this is not always possible and that
the best approximation to the non-existent orbit-space is the quotient scheme with
coordinate ring the invariant polynomial functions and that this quotient scheme
parametrizes the closed orbits.

Artin proved that in the case of representation schemes the closed orbits are
precisely the isomorphism classes of semi-simple n-dimensional representations and
therefore that the quotient map π assigns to a representation the direct sum of its
Jordan-Hölder simple factors.

If your scheme is a principal bundle then of course all orbits are closed and the
quotient scheme is really the orbit space. Artin classified the principal PGLn-
bundles over the prime spectrum of a commutative ring as the representation
schemes of Azumaya algebras of degree n over C.

Moreover, in this case one recovers the center from the representation scheme as
the invariant polynomial functions and the Azumaya algebra itself as the ring of all
equivariant maps from the representation scheme to the affine space of all complex
matrices equipped with the PGLn-action by conjugation.

Although there is no hope to reconstruct more general noncommutative algebras
R just from their n-dimensional representations, Artin conjectured that one should
be able to describe explicitly the ring of equivariant maps and consider it as the best
level n approximation of R and he also conjectured that in general the invariant
polynomials shoudl be generated by traces.

11 : These conjectures were proved a couple of years later by Claudio Procesi.
Recall the universal map jn sending elements of R to n × n matrices over the
coordinate ring of te representation scheme, so we can take traces of these matrices
and they are obviously invariant polynomial maps. Procesi proved that they indeed
generate all invariants.

Moreover, he proved that the ring of all equivariant maps is generated by the
images of teh universal map jn together with all the traces and in fact he was able
to describe the kernel of this map as being generated by all formal Cayley-Hamilton
identities of degree n.

These results also illustrate Kontsevich’s philosophy that all relevant equivariant
data (such as invariants and equivariant maps) is really induced on all represen-
tation schemes by objects defined on the noncommutative level. For example one
could define noncommutative functions to be this vectorspace or its symmetric al-
gebra because they determine at every level n the correct equivariant functions
namely teh invariants.

Also note that whereas these construction were meant to be applied to noncom-
mutative algebras R we can also apply them to commutative rings and in this case
the relevant algebra describing equivariant maps is again a commutatiev algebra
namely the tensorproduct of R with the symmetric algebra over it.

12 : Kontsevich gave some examples of his philosophy such as interpreting
Procesi’s result as noncommutative functions giving the invariants or derivations of
R giving equivariant vector-fields but since a few years we have a general procedure
to implement this idea by what i call Michel’s Machine because it is due to Michel
Van den Bergh.
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By our universal map jn we can view the matrix-ring as an R-bimodule as well
as a module over the coordinate ring via the diagonal embedding and so tensoring
with this matrix ring gives a nice functor from R-bimodules to sheaves over the rep-
resentation scheme and hence we can induce all geometric gadgets defined in terms
of bimodules, for example deRham-complexes and stuff like that to get equivariant
complexes of sheaves on all representation schemes.

We will not use this functor but I guess Yuri Berest will tell you more about it
in the case of derived representation schemes on wednesday.

13 : Clearly one expects all this to work best for noncommutative analogoins of
manifolds which are what Kontsevich called formally smooth algebras as they have
the property that all of its representation schemes are smooth and I’ve written a
thick book giving explicit etale local descriptions of its level n approximations and
a classification of the singularities you can get in their quotient schemes.

So if you are interested in this or want to have the details of the theorems i
mentioned before you can download it from this short URL.

14 : But what does all of this has to do with our algebraic D-branes? Recall
that our naive algebraic view of a stack of n D-branes was to view them as an
algebra map from the coordinate ring of your favourite space-time variety to an
Azumaya algebra of degree n over the locus of the branes. Or we can define more
generally an algebraic D-brane in a possibly noncommutative algebra R over a
commutative ring C to be an algebra map from R to an Azumaya algebra over C.

We have seen that we can associate to this map an equivariant map between the
n-th representation schemes and this data contains enough information to recon-
struct the original map by going to the rings of equivariant maps to n×n complex
matrices. By Artin’s result we know that this algebra coincides with the Azumaya
algebra and for R it only gives us the level n approximation but we can then use
again our universal map jn to recover the algebra map from R to A.

In the special case considered by Liu and Yau we now know what the noncom-
mutative space-time should be that allows us to embed all n stacks of D-branes,
namely the prime spectrum of the level n-approximation of the coordinate ring of
Y . In the simple example of the affine line we get the polynomial ring in n vari-
ables with x corresponding to the complex matrix and the xi being teh trace of the
i-th power of this matrix. So we get indeed that in this case the space should be
n-dimensional but we are now able to compute these spaces moire generally.

15 : Recall that geometric invariant theory enabled us only to parametrize the
closed orbits by the points of the quotient scheme but one would love to describe
all orbits in a geometric way. Artin, Mumford and Deligne showed that one can do
this if allow more general geometric objects than schemes namely algebraic stacks.
So what are these?

Recall that an affine scheme was a functor from commutative algebras to sets, a
stack will be a functor from commutative algebras to groupoids, where a groupoid
is a category in which every morphism is an isomorphism.

Note that we can turn every set into a groupoid by taking as the only morphisms
an identity map for each element of the set. In this way all affine schemes are special
instances of algebraic stacks.
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In particular, they defined the quotient stack as the functor that associates to a
commutative algebra C the collection of all settings where Y is a principal G-bundle
over the prime spectrum together with a G-equivariant map to X. Morphisms be-
tween two such settings are given by equivariant maps making the diagram commute
and as all G-equivariant maps between principal G-bundles can be inverted this is
indeed a groupoid.

What are the complex points of this functor. Well, over C there is just 1 principal
G-bundle namely the group G itself and a G-equivariant map sends the unit to a
point in X and its image is the G-orbit of that point. Maps between two such
complex points only alter the given point in the orbit so isoclasses are really the
G-orbits in X.

Nice so we have a functor describing all G-orbits but what is the geometry of this
so called quotient stack and in particular can we make sense of the quotient-map
sending a point to its orbit?

16 : Well we can probe our mystery object by affine schemes. That is we can
describe maps from spec(C) to the quotient stack. Because both are functors the
correct definition of a map between them should be a natural transformation and
an old idea of Yoneda identifies such natural transformations as the C-points of the
quotient-stack. The correspondence is easy, C-points of spec(C) are the algebra
maps from C to itself and in this set there is a special element namely the identity
map and this is send under a natural transformation to a C-point of the quotient
stack. What Yoneda proved was that this element determines the transformation.

In particular, the elusive quotient map π is determined by a principal G-bundle
over X with an equivariant map to X. There is a canonical choice, namely the
trivial G-bundle together with the action map to X.

An important property of the map π is that it is representable. By this we mean
that if you take any prime spectrum and any map α and form the stacky fiber-
product (the details of which i’ll spare you) then this fiber-product is actually an
affine scheme and one easily verifies that the required scheme is just the principal
G-bundle corresponding to the map α.

This allows us to define properties of the quotient-map as the collective properties
of all the maps πα which are now maps between ordinary schemes.

If G is a finite group then all the πα are etale so in this case the quotient map
is etale and one calls the corresponding stack a Deligne-Mumford stack whereas if
G is a reductive group then alle πα are smooth and so the quotient map is smooth
and we call it an Artin stack.

In particular if we have a G-action on a smooth variety X then the quotient-stack
not only parametrizes the orbits but it is a smooth object in the stacky world.

17 : After this short introduction to algebraic stacks we will now describe
the C-points of the quotient representation stack. By defnition they correspond
to principal PGLn-bundles over the prime spectrum together with an equivariant
map to the n-th representation scheme of R. By Artin’s result we know that these
principal bundles are exactly the representation schemes of Azumaya algebras of
degree n.

Again we can take rings of equivariant maps on both sides and compose it with
the universal map to get an algebra map from R to the Azumaya algebra, that is,
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we have identified the C-points of the quotient representation stack as the n-stacks
of algebraic branes in R over C and the different use of stack in both cases makes
it somewhat confusing.

In particular, if we start with a formally smooth algebra R then for every n these
quotient stacks are smooth, so one should expect a good behavior for algebraic
branes in this case.

18 : I’d like to close with two suggestions for further work. In string theory
D-branes are not stationary but rather dynamic objects, so branes can merge or
separate from the stack and in our naive algebraic framework this corresponds to
the deformation of the algebra maps.

We define one algebraic brane, that is an algebra map f to deform to another if
there are more elements in A centralizing the image of f than centralizing the image
of g. The idea behind this definition is that these centralizer algebras should be
viewed as a version of the Lie algebras of stabilizer groups and deformation should
correspond to symmetry breaking.

In order to study these deformations geometrically one can define the A-
representation scheme of R by mimicking Bergman’s old idea which works just
as well because A is an Azumaya algebra and we can use the centralizer result of
maps from Azumaya algebras to show that the abelianization of the A-th root of R
then represents this functor of which the C-points are exactly the algebraic branes
from R to A and one can even define an A-version of the representation stack.

There is one difference though. The A-representation scheme is not an affine
scheme over the complex numbers but rather over spec(C).

19 : Finally, the algebraic framework i’ve described raises a question about the
process of stacking more and more D-branes on the same locus. In our setting a
larger stack of algebraic branes would mean a map to an Azumaya algebra of larger
degree over C. But one should connect these two stacks of branes somehow and
the idea must be that the bigger stack contains more information than the smaller
one.

A possibility to define this relationship between the two branes might be that
there should be a morphism between the two Azumaya algebras such that the bigger
map is a deformation from the composition of the smaller with the Azumaya-map.

A simple illustration of a family of algebraic branes relatedin this way is given
here using teh quantum-tori stacked over the maximal torus of GL2. I think such
families of maps to Azumaya algebras deserve a closer attention.

Anyway, let’s return to the compatibility map between the small and bigger
Azumaya algebra. By the double-centralizer result such maps can arise only if the
degree of the smaller Azumaya is a divisor of that of the bigger one.

This suggests that the stacking process of D-branes has a multiplicative aspect
to it rather than an additive one and one of the things i’d love to find out over this
week is whether this rings a bell to some of the physicists present. Thanks!
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